Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.
Please note that the LabMedica website is also available in a complete English version
Presenta Sitios para socios Información LinkXpress
Ingresar
Publique su anuncio con nosotros
PURITAN MEDICAL

Deascargar La Aplicación Móvil




Un biosensor usa CRIPR-Cas9 para detectar secuencias objetivo en el ADN

Por el equipo editorial de Labmedica en español
Actualizado el 09 Apr 2019
Print article
Imagen: Un primer plano del dispositivo CRISPR-Chip (Fotografía cortesía del Instituto de Posgrado Keck).
Imagen: Un primer plano del dispositivo CRISPR-Chip (Fotografía cortesía del Instituto de Posgrado Keck).
Un equipo de ingenieros biomédicos ha desarrollado y ensayado un dispositivo biosensor basado en grafeno que utiliza la tecnología CRISPR/Cas9 para permitir la detección digital de una secuencia de ADN objetivo dentro del material genómico intacto.

CRISPR/Cas9 es considerado como la técnica de vanguardia de la biología molecular. Los CRISPR (repeticiones palindrómicas cortas agrupadas regularmente interpuestas) son segmentos de ADN procariótico que contienen repeticiones cortas de secuencias de bases. Cada repetición es seguida por segmentos cortos de “ADN espaciador” de exposiciones previas a un virus o plásmido bacteriano. Desde 2013, el sistema CRISPR/Cas9 se utiliza en la investigación para la edición de genes (agregar, interrumpir o cambiar la secuencia de genes específicos) y la regulación de genes. Al administrar la enzima Cas9 y los ARN guía adecuados (sgARN) a una célula, el genoma del organismo se puede cortar en cualquier ubicación deseada. El sistema convencional CRISPR/Cas9 de Streptococcus pyogenes se compone de dos partes: la enzima Cas9, que rompe la molécula de ADN y las guías de ARN específicas que guían la proteína Cas9 al gen objetivo en la cadena de ADN.

En contraste con los métodos clásicos para la detección de ácidos nucleicos, que requieren muchos reactivos y una instrumentación costosa y voluminosa, el dispositivo “CRISPR-Chip” desarrollado por investigadores de la Universidad de California, Berkeley (EUA) y el Instituto de Posgrado Keck (Claremont, CA, EUA) explota la capacidad de selección de genes de la proteína asociada a CRISPR 9 (Cas9), desactivada catalíticamente, acomplejada con un ARN de guía única, específico e inmovilizado en un campo basado en un transistor de efecto de campo de grafeno. Esto creó un dispositivo de prueba de ácidos nucleicos sin etiqueta cuya señal de salida se podía medir utilizando un simple lector de mano.

Mecánicamente, el complejo CRISPR localizó el sitio de ADN objetivo en el genoma, se unió a él y provocó un cambio en la conductancia eléctrica del grafeno, que, a su vez, cambió las características eléctricas del transistor. Estos cambios fueron detectados con un dispositivo de mano.

Los investigadores utilizaron el CRISPR–Chip para analizar las muestras de ADN recolectadas de líneas celulares HEK293T que expresaban una proteína azul fluorescente, y muestras clínicas de ADN con dos mutaciones definidas en los exones comúnmente eliminados en individuos con distrofia muscular de Duchenne. En presencia de ADN genómico que contiene el gen objetivo, CRISPR-Chip generó, en 15 minutos y sin la necesidad de amplificación, un aumento significativo en la señal de salida en relación con las muestras que carecen de la secuencia objetivo.

“Hemos desarrollado el primer transistor que utiliza CRISPR para buscar posibles mutaciones en su genoma”, dijo la autora principal, la Dra. Kiana Aran, profesora asistente de diagnóstico médico y terapéutica en el Instituto de Posgrado Keck. “Usted simplemente pone su muestra de ADN purificado en el chip, le permite a CRISPR realizar la búsqueda y el transistor de grafeno informa el resultado de esta búsqueda en minutos. La supersensibilidad del grafeno nos permitió detectar las actividades de búsqueda de ADN de CRISPR. CRISPR trajo la selectividad, los transistores de grafeno trajeron la sensibilidad y, juntos, pudimos hacer esta detección sin PCR ni amplificación. La combinación de la nanoelectrónica moderna con la biología moderna abre una nueva puerta para obtener acceso a nueva información biológica que antes no era accesible”.

El dispositivo CRISPR-Chip se describió en la edición digital del 25 de marzo de 2019 de la revista Nature Biomedical Engineering.

Enlace relacionado:
Universidad de California, Berkeley
Instituto de Posgrado Keck



Print article
BIOHIT  Healthcare OY

Canales

Hematología

ver canal
Imagen: El riesgo de resultados tromboembólicos y de hemorragia después de los cánceres hematológicos es muy alto (Fotografía cortesía de la Universidad de Warwick).

Riesgo tromboembólico aumenta después de los cánceres hematológicos

El cáncer hematológico incluye leucemia, cáncer de médula ósea y cánceres de los ganglios linfáticos. Los avances terapéuticos han mejorado la supervivencia después de los cánceres hematológicos.... Más

Inmunología

ver canal
Imagen: Una imagen reconstruida en 3D de un doblete de una célula T (CD3, verde) y un monocito (CD14) (Fotografía cortesía del Instituto de Inmunología de La Jolla).

Complejos circulantes de monocitos-células T indican perturbaciones inmunes

La comunicación entre las células inmunes es un componente importante de las respuestas inmunitarias, ya sea directamente a través de contactos célula-célula o indirectamente a través de la secreción de... Más

Microbiología

ver canal
Imagen: El sistema de Pruebas de Sensibilidad a los Antibióticos Automatizado Completo Sensititre (AST) realiza todas las pruebas de sensibilidad en una sola plataforma utilizando la sensibilidad superior de los resultados verdaderos de la CIM (Fotografía cortesía de Thermo Fisher Scientific).

Sistema comercial es efectivo para las plagas de susceptibilidad al cefiderocol

La formulación novedosa del antibiótico cefalosporina lo hace muy eficaz contra bacterias gramnegativas no fastidiosas que de otra forma son altamente resistentes a los antibióticos, incluidas las cepas... Más

Patología

ver canal
Imagen: El biomarcador en suero antígeno prostático específico del cáncer de próstata (PSA) (Fotografía cortesía de Wikimedia Commons).

Biomarcador de microARN diferencia el crecimiento de los tumores agresivos de próstata

Un biomarcador de microARN que se encuentra en la orina de los hombres con cáncer de próstata puede diferenciar los cánceres de crecimiento lento de los tumores agresivos potencialmente mortales.... Más

Tecnología de Lab

ver canal
Imagen: (A y B) Fotomicrografías de las capas del dispositivo; (C) el molde listo para fundir y (D) el chip montado en una lámina (Fotografía cortesía de la Universidad Estatal de San Diego).

Dispositivo de microfluidos aísla los grupos de células tumorales circulantes

Los tres desafíos principales del tratamiento del cáncer son la metástasis, la recurrencia y la resistencia a la terapia adquirida. Estos desafíos se han relacionado estrechamente con los grupos de células... Más

Industria

ver canal
Imagen: Una red sólida de cadenas de suministro y estrategias de investigación y desarrollo influyen sobre el mercado global de diagnóstico molecular (Fotografía cortesía de Medgadget).

Mercado mundial de diagnóstico molecular alcanzará 13.870 millones de dólares en 2025

El mercado de diagnóstico molecular global se valoró en 8.000 millones de dólares en 2017 y se proyecta que crecerá a una tasa anual compuesta del 7,1% durante el período de 2018 a 2025 para alcanzar los 13.... Más
Copyright © 2000-2019 Globetech Media. All rights reserved.