Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Please note that the LabMedica website is also available in a complete English version
Presenta Sitios para socios Información LinkXpress
Ingresar
Publique su anuncio con nosotros
Sekisui Diagnostics UK Ltd.

Deascargar La Aplicación Móvil




Algoritmos de inteligencia artificial potenciados por aprendizaje profundo mejoran la precisión en el diagnóstico de cáncer de piel

Por el equipo editorial de LabMedica en español
Actualizado el 10 May 2024
Print article
Imagen: La IA puede mejorar la precisión de los diagnósticos de cáncer de piel (foto cortesía de 123RF)
Imagen: La IA puede mejorar la precisión de los diagnósticos de cáncer de piel (foto cortesía de 123RF)

Algoritmos de inteligencia artificial (IA) se utilizan cada vez más en diversos entornos clínicos, como la dermatología. Estos algoritmos se desarrollan entrenando una computadora con cientos de miles o millones de imágenes de diversas afecciones de la piel, cada una etiquetada con detalles como el diagnóstico y los resultados del paciente. A través de un proceso conocido como aprendizaje profundo, la computadora aprende a identificar patrones en las imágenes que son indicativos de enfermedades específicas de la piel, incluidos los cánceres. Una vez suficientemente entrenado, el algoritmo puede sugerir diagnósticos potenciales basados en nuevas imágenes de la piel de un paciente. Sin embargo, estos algoritmos no funcionan de forma aislada; se utilizan bajo la supervisión de médicos que evalúan al paciente, realizan sus propias valoraciones diagnósticas y deciden si seguir las recomendaciones del algoritmo.

Ahora, un nuevo estudio dirigido por investigadores de Stanford Medicine (Stanford, CA, EUA) ha descubierto que los algoritmos de inteligencia artificial, que utilizan el aprendizaje profundo, pueden mejorar la precisión del diagnóstico de cánceres de piel. Este beneficio se extiende a los dermatólogos, aunque la mejora es más pronunciada para los no dermatólogos. El estudio analizó 12 estudios de investigación que documentaron más de 67.000 evaluaciones de posibles cánceres de piel realizadas por varios profesionales médicos, con y sin asistencia de IA. Los hallazgos indicaron que los profesionales de la salud sin el apoyo de la IA diagnosticaron con precisión aproximadamente el 75 % de los casos reales de cáncer de piel e identificaron correctamente alrededor del 81,5 % de las afecciones no cancerosas que se parecían al cáncer. El desempeño de los profesionales de la salud mejoró cuando utilizaron la IA para ayudar con los diagnósticos. Su sensibilidad aumentó hasta aproximadamente el 81,1% y su especificidad hasta el 86,1 %.

Aunque estas mejoras pueden parecer modestas, son cruciales para diagnosticar correctamente a los pacientes a quienes se les dice erróneamente que no tienen cáncer cuando sí lo tienen, o a quienes se les informa incorrectamente que tienen cáncer cuando no lo tienen. El análisis reveló además que los estudiantes de medicina, las enfermeras practicantes y los médicos de atención primaria fueron los que más obtuvieron la asistencia de la IA, con mejoras promedio de aproximadamente 13 puntos en sensibilidad y 11 puntos en especificidad. Si bien los dermatólogos y residentes de dermatología ya mostraron una mayor precisión general, su desempeño diagnóstico también obtuvo ganancias en sensibilidad y especificidad con la asistencia de la IA. Los investigadores ahora buscan explorar más a fondo el potencial y los desafíos de integrar herramientas de IA en la atención médica, centrándose particularmente en cómo las percepciones y actitudes de los médicos y pacientes hacia la IA podrían afectar su adopción.

"Los estudios anteriores se han centrado en cómo funciona la IA en comparación con los médicos", dijo la investigadora postdoctoral Jiyeong Kim, PhD. "Nuestro estudio comparó a los médicos que trabajan sin asistencia de IA con los médicos que utilizan IA para diagnosticar cánceres de piel".

Enlaces relacionados:
Medicina de Stanford


Print article

Canales

Química Clínica

ver canal
Imagen: La nueva guía de ADLM ayudará a los profesionales de la salud a gestionar las pruebas de virus respiratorios en un mundo post-COVID (foto cortesía de 123RF)

Nuevo documento de ADLM ofrece recomendaciones de expertos sobre pruebas clínicas para infecciones virales respiratorias

Las infecciones del tracto respiratorio, causadas predominantemente por patógenos virales, son un motivo común de consulta médica. El diagnóstico preciso y rápido de... Más

Diagnóstico Molecular

ver canal
Imagen: La prueba HelioLiver Dx ha cumplido los criterios de valoración primarios y secundarios del estudio CLiMB.(Foto cortesía de Helio Genomics)

Prueba en sangre supera al ultrasonido en detección temprana del cáncer de hígado

Los pacientes con cirrosis hepática y hepatitis B crónica tienen un mayor riesgo de desarrollar carcinoma hepatocelular (CHC), el tipo más prevalente de cáncer de hígado.... Más

Hematología

ver canal
Imagen: El ensayo de Procleix Arboplex ha recibido la marca CE (foto cortesía de Grifols)

Primera prueba NAT 4 en 1 para el cribado de arbovirus podría reducir el riesgo de infecciones transmitidas por transfusiones

Los arbovirus representan una amenaza emergente para la salud mundial, exacerbada por el cambio climático y el aumento de la conectividad mundial que está facilitando su propagación a nuevas regiones.... Más

Inmunología

ver canal
Imagen: La herramienta de IA predice si el cáncer responderá a los inhibidores del punto de control inmunitario (Foto cortesía del Instituto Nacional del Cáncer)

Herramienta de IA predice la respuesta de pacientes con cáncer a la inmunoterapia

Los inhibidores de puntos de control inmunológico son una forma de fármaco de inmunoterapia que permite a las células inmunitarias atacar y destruir las células cancerosas.... Más

Microbiología

ver canal
Imagen: La prueba de PCR POC acorta el tiempo para los resultados de las pruebas de ITS (foto cortesía de Visby Medical)

Prueba POC de ITS reduce el tiempo desde la llegada a la sala de urgencias hasta los resultados de preuba

En un informe de vigilancia de infecciones de transmisión sexual (ITS) de 2024 elaborado por la Organización Mundial de la Salud (OMS), se registraron más de 2,5 millones de casos,... Más

Tecnología

ver canal
Imagen: Ilustración del parche de microagujas (foto cortesía del Instituto Karolinska)

Parche de microagujas detecta el cáncer de piel en sus etapas tempranas

La bioelectrónica portátil se ha convertido en una innovación significativa en la atención sanitaria, especialmente en el campo de la biodetección, proporcionando un nuevo método para controlar la salud... Más

Industria

ver canal
Imagen: Durante 46 años, Roche y Hitachi han colaborado para ofrecer soluciones de diagnóstico innovadoras (foto cortesía de Roche)

Roche e Hitachi High-Tech extienden su asociación de 46 años para avances en pruebas diagnósticas

Roche (Basilea, Suiza) e Hitachi High-Tech (Tokio, Japón) han renovado su acuerdo de colaboración, comprometiéndose por 10 años más de colaboración. Esta extensión reúne su amplia experiencia en innovación,... Más
Copyright © 2000-2024 Globetech Media. All rights reserved.