Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros

Deascargar La Aplicación Móvil




Método de imágenes innovador revoluciona la microscopía

Por el equipo editorial de LabMedica en español
Actualizado el 12 Aug 2024
Imagen: La tecnología patentada TempoSTEM revoluciona la microscopía al reimaginar la lógica de la obtención de imágenes (foto cortesía de TurboTEM)
Imagen: La tecnología patentada TempoSTEM revoluciona la microscopía al reimaginar la lógica de la obtención de imágenes (foto cortesía de TurboTEM)

Actualmente, los microscopios electrónicos de transmisión de barrido (STEM, por sus siglas en inglés) emplean un haz de electrones altamente enfocado que atraviesa una muestra, creando imágenes punto por punto. Tradicionalmente, en cada punto, el haz se detiene durante un tiempo constante y predeterminado para recopilar señales, de manera similar a cómo funcionan las cámaras con película fotográfica, lo que resulta en imágenes uniformemente expuestas en todas las áreas. Este método expone continuamente la muestra a electrones hasta que transcurre el "tiempo de exposición" establecido para cada píxel. Aunque es sencilla de implementar, esta técnica puede someter la muestra a una radiación excesiva, lo que podría alterarla o destruirla.. Ahora, una técnica de imágenes pionera que utiliza microscopios avanzados ha reducido significativamente el tiempo y la radiación necesarios para obtener imágenes. Este avance es particularmente beneficioso en campos como la medicina, donde promete mejorar la visualización de materiales sensibles, como los tejidos biológicos, que son altamente susceptibles a sufrir daños.

El nuevo método, ideado por un grupo de investigación internacional dirigido por el Trinity College Dublin (Dublín, Irlanda), replantea fundamentalmente el proceso tradicional de obtención de imágenes. En lugar de medir el número de "eventos" detectados, es decir, los electrones dispersados desde varias partes de la muestra durante un período fijo, este enfoque innovador emplea un sistema de detección que registra el tiempo que tarda en detectar un número predeterminado de eventos. Ambos métodos proporcionan un contraste de imagen de "tasa de detección" comparable, pero la nueva teoría matemática revela que, aunque el primer electrón detectado en cada posición ofrece información sustancial para la construcción de la imagen, los electrones adicionales aportan cada vez menos información. Es importante destacar que cada electrón que interactúa con la muestra conlleva un riesgo similar de daño.

Este método permite apagar la iluminación precisamente cuando la eficiencia de la imagen alcanza su punto óptimo, lo que reduce la cantidad de electrones necesarios para producir una imagen de igual o superior calidad. Sin embargo, la teoría por sí sola no reduce la exposición a la radiación. Para implementar este modo de radiación reducida, el equipo ha patentado un sistema llamado Tempo STEM, que integra un "supresor de haz" de alta tecnología que puede apagar rápidamente el haz después de lograr la precisión deseada en cada punto de muestra. Esta combinación innovadora de dos tecnologías de vanguardia marca un avance significativo en las capacidades de microscopía. Al permitir que el haz de electrones se encienda y apague rápidamente en respuesta a eventos en tiempo real, una capacidad que antes no estaba disponible, este enfoque no solo reduce la dosis de radiación general necesaria para obtener imágenes de alta calidad sino que también minimiza la radiación innecesaria que ofrece rendimientos decrecientes, protegiendo así la muestra de posibles daños.

"Tendemos a pensar que los electrones son relativamente suaves desde la perspectiva de la radiación, como relativamente inofensivos desde una perspectiva de radiación, pero cuando se disparan a una pequeña muestra biológica a velocidades de alrededor del 75 % de la velocidad de la luz, no es sorprendente que dañen estas muestras", dijo el Dr. Jon. Peters de Trinity College, primer autor de la investigación publicada en la importante revista internacional Science. “Este ha sido un problema importante para la microscopía, ya que las imágenes que se obtienen podrían ser inutilizables o, peor aún, engañosas. sto es obviamente problemático si necesitas tomar decisiones sobre futuros materiales para baterías o el desarrollo de catalizadores”.

Enlaces relacionados:
Trinity College de Dublín

Miembro Oro
SISTEMA DE RECOLECCIÓN Y TRANSPORTE
PurSafe Plus®
KIT DE PRUEBA POC PARA H.PYLORI
Hepy Urease Test
Clinical Chemistry System
P780
Miembro Oro
PIPETA HÍBRIDA
SWITCH

Canales

Diagnóstico Molecular

ver canal
Imagen: el análisis de sangre del ADN tumoral circulante podría proporcionar una advertencia más temprana sobre la recurrencia posterior al trasplante (fotografía cortesía de Shutterstock)

Análisis sanguíneo podría permitir detección temprana de recurrencia del cáncer de hígado después del trasplante

El cáncer de hígado es una de las principales causas de muerte por cáncer en todo el mundo, con más de 800.000 diagnósticos y más de 700.000 muertes al año.... Más

Inmunología

ver canal
Imagen: las células tumorales circulantes aisladas de muestras de sangre podrían ayudar a guiar las decisiones sobre inmunoterapia (fotografía cortesía de Shutterstock)

Análisis de sangre identifica pacientes con cáncer pulmonar beneficiarios de fármaco de inmunoterapia

El cáncer de pulmón de células pequeñas (CPCP) es una enfermedad agresiva con opciones de tratamiento limitadas, e incluso las inmunoterapias recientemente aprobadas no benefician... Más

Microbiología

ver canal
Imagen: la plataforma de diagnóstico de precisión dSHERLOCK permite la evaluación cuantitativa de infecciones por hongos en 20 minutos (fotografía cortesía del Instituto Wyss de la Universidad de Harvard)

Plataforma de IA permite detección rápida de patógenos de C. auris resistentes a fármacos

Las infecciones causadas por la levadura patógena Candida auris representan una amenaza significativa para los pacientes hospitalizados, en particular para aquellos con sistemas inmunitarios debilitados... Más
Copyright © 2000-2026 Globetech Media. All rights reserved.