Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros

Deascargar La Aplicación Móvil




Potente herramienta mejora análisis del cáncer de tejido

Por el equipo editorial de LabMedica en español
Actualizado el 20 Jul 2025
Imagen: la nueva herramienta llamada OmicsTweezer utiliza técnicas avanzadas de aprendizaje automático para analizar datos biológicos a gran escala (Yang, et al., Cell Genomics, 2025; doi.org/10.1016/j.xgen.2025.100950)
Imagen: la nueva herramienta llamada OmicsTweezer utiliza técnicas avanzadas de aprendizaje automático para analizar datos biológicos a gran escala (Yang, et al., Cell Genomics, 2025; doi.org/10.1016/j.xgen.2025.100950)

Estudiar la composición de los tipos celulares en el tejido humano es crucial para comprender enfermedades como el cáncer, pero presenta importantes desafíos tanto en precisión como en escalabilidad. El microambiente tumoral, compuesto por diversos tipos celulares, condiciona el desarrollo tumoral e influye en la evolución del paciente. Los científicos suelen utilizar datos masivos de muestras de tejido, que combinan señales de numerosas células, para estimar la composición celular. Sin embargo, estos datos masivos a menudo no coinciden con los datos de células individuales debido a las diferencias en los métodos de recopilación de datos, un problema conocido como "efecto lote". Esta discrepancia dificulta la precisión del análisis. Los investigadores han desarrollado una nueva herramienta que ayuda a superar estos desafíos al permitir una estimación más fiable de la composición celular en muestras de tejido.

La herramienta, denominada OmicsTweezer, fue creada por investigadores del Instituto Oncológico Knight de la Universidad de Salud y Ciencias de Oregón (Portland, Oregón, EUA). Utiliza aprendizaje automático avanzado, que incluye aprendizaje profundo y un método denominado transporte óptimo, para alinear datos de células individuales con datos masivos en un espacio digital compartido. Este enfoque avanzado reduce los errores causados por los efectos de lote, lo que permite a los científicos inferir con mayor precisión la composición de los tipos celulares en muestras de tejido. A diferencia de las herramientas tradicionales, que se basan en modelos lineales más simples, OmicsTweezer utiliza un enfoque no lineal para correlacionar patrones entre diferentes tipos de datos, lo que proporciona un análisis más claro y fiable de la composición tisular.

OmicsTweezer se probó utilizando conjuntos de datos simulados y muestras de tejido real de pacientes con cáncer de próstata y colon. La herramienta identificó con éxito subtipos celulares sutiles y estimó cambios en las poblaciones celulares en diferentes grupos de pacientes. Los hallazgos, publicados en Cell Genomics, sugieren que OmicsTweezer podría ayudar a identificar posibles dianas terapéuticas y orientar las decisiones de tratamiento al identificar qué poblaciones celulares cambian durante la progresión de la enfermedad. Los investigadores planean continuar perfeccionando esta herramienta y sus aplicaciones para mejorar la investigación del cáncer y los tratamientos oncológicos de precisión en entornos clínicos.

“Con esta herramienta, ahora podemos estimar las fracciones de las poblaciones definidas por datos unicelulares en datos masivos de grupos de pacientes”, afirmó el Dr. Zheng Xia, profesor asociado de ingeniería biomédica en la Facultad de Medicina de OHSU y autor principal del estudio. “Esto podría ayudarnos a comprender qué poblaciones celulares están cambiando durante la progresión de la enfermedad y orientar las decisiones terapéuticas”.

Enlaces relacionados:
Instituto Oncológico Knight de OSHU

New
Miembro Oro
Clinical Drug Testing Panel
DOA Urine MultiPlex
KIT DE PRUEBA POC PARA H.PYLORI
Hepy Urease Test
Homocysteine Quality Control
Liquichek Homocysteine Control
CBM Analyzer
Complete Blood Morphology (CBM) Analyzer

Canales

Diagnóstico Molecular

ver canal
Imagen: el dispositivo de diagnóstico puede indicar cómo responden los tumores cerebrales mortales al tratamiento con un simple análisis de sangre (fotografía cortesía de UQ)

Dispositivo de diagnóstico predice respuesta al tratamiento de tumores cerebrales mediante análisis sanguíneo

El glioblastoma es uno de los tipos más mortales de cáncer cerebral, en gran parte porque los médicos no cuentan con un método fiable para determinar la eficacia de los tratamientos... Más

Inmunología

ver canal
Imagen: las células tumorales circulantes aisladas de muestras de sangre podrían ayudar a guiar las decisiones sobre inmunoterapia (fotografía cortesía de Shutterstock)

Análisis de sangre identifica pacientes con cáncer pulmonar beneficiarios de fármaco de inmunoterapia

El cáncer de pulmón de células pequeñas (CPCP) es una enfermedad agresiva con opciones de tratamiento limitadas, e incluso las inmunoterapias recientemente aprobadas no benefician... Más

Microbiología

ver canal
Imagen: nueva evidencia sugiere que los desequilibrios en el microbioma intestinal pueden contribuir a la aparición y progresión del deterioro cognitivo leve y la enfermedad de Alzheimer (fotografía cortesía de Adobe Stock)

Nuevo estudio identifica características del microbioma intestinal asociadas con enfermedad de Alzheimer

La enfermedad de Alzheimer afecta a aproximadamente 6,7 millones de personas en Estados Unidos y a casi 50 millones en todo el mundo; sin embargo, el deterioro cognitivo temprano sigue siendo difícil de... Más
Copyright © 2000-2026 Globetech Media. All rights reserved.