Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBE SCIENTIFIC, LLC

Deascargar La Aplicación Móvil




Analizan estructuras modificadas de proteínas mediante monitorización de reacciones seleccionadas

Por el equipo editorial de LabMedica en español
Actualizado el 11 Nov 2014
Imagen: El espectrofotómetro de fluorescencia Cary Eclipse (Fotografía cortesía de Agilent Technologies).
Imagen: El espectrofotómetro de fluorescencia Cary Eclipse (Fotografía cortesía de Agilent Technologies).
Se ha desarrollado un novedoso método para medir la mayoría de las proteínas con modificación estructural en cualquier muestra biológica, la cual puede contener miles de proteínas diferentes.

Aunque hay una serie de técnicas para estudiar las proteínas con modificaciones estructurales, tales como la cristalografía de rayos X, la espectroscopia de resonancia magnética nuclear y otras técnicas espectroscópicas, no pueden ser utilizadas para analizar muestras biológicas complejas.

Los científicos del Instituto Federal Suizo de Tecnología, (ETH, Zúrich, Suiza) combinaron una técnica mayor y un enfoque moderno de los estudios del proteoma. Las enzimas digestivas establecidas, tales como la proteinasa K fueron añadidas a la muestra, que cortaba las proteínas en función de su estructura en pedazos más pequeños conocidos como péptidos. Los fragmentos pueden ser medidos usando una técnica llamada Monitorización de Reacción Seleccionada (SRM). Este método permite que muchos péptidos diferentes sean buscados específicamente y se puedan medir sus cantidades. Con base en los péptidos encontrados, se pueden medir y cuantificar las proteínas que estaban presentes originalmente en la muestra.

El equipo utilizó diversas técnicas en su estudio en las cuales unas alícuotas de la muestra fueron sometidas a un análisis de unión de la tioflavina T (ThT), a dicroísmo circular y a mediciones de espectroscopía infrarroja con transformación de Fourier y se obtuvieron imágenes por microscopía electrónica de transmisión (TEM) para confirmar la formación de fibrillas de tipo amiloide. Para el ensayo de ThT, las emisiones de fluorescencia fueron registradas a 484 nm en un espectrofotómetro de fluorescencia Cary Eclipse (Agilent Technologies Inc.; Loveland, CO, EUA). Las mediciones de espectroscopía infrarroja con transformación de Fourier fueron realizadas en un espectrómetro 1,720 × (PerkinElmer Life Sciences, Waltham, MA, EUA).

Los investigadores diseñaron una prueba para medir específicamente las versiones normales y alteradas de la proteína alfa-sinucleína en muestras complejas, no purificadas, como la sangre o el líquido cefalorraquídeo. Se cree que la alfa-sinucleína causa el Parkinson cuando se modifica su estructura. La variedad estructural patológica se congrega con su propia especie para formar fibrillas amiloides, que perjudican las neuronas. Con la ayuda de la prueba, los científicos lograron medir la cantidad exacta de las especies patógenas y no patógenas de alfa-sinucleína directamente en una muestra compleja. La prueba también dio información sobre la estructura de la proteína.

Paola Picotti, PhD, una profesora de biología de redes de proteínas y autora principal del estudio, dijo: “Dado que el nuevo método nos permite medir tanto las estructuras de la proteína alfa-sinucleína, en una gran variedad de muestras, puede ser posible utilizar este para desarrollar nuevos biomarcadores para la enfermedad en el futuro. El número de la amiloidosis, enfermedades que se desarrollan debido a cambios en las estructuras de proteínas, aumenta cada año”. El estudio fue publicado el 14 de septiembre de 2014, en la revista Nature Biotechnology.

Enlaces relacionados:

Swiss Federal Institute of Technology
Agilent Technologies
PerkinElmer Life Sciences

Miembro Oro
CONTROL DE CALIDAD DE TROPONINA T
Troponin T Quality Control
CONTROLADOR DE PIPETA SEROLÓGICAPIPETBOY GENIUS
New
UHF RFID Tag & Inlay
AD-327 U9 ETSI Pure 95
New
Miembro Plata
Cell and Tissue Culture Plastics
Diamond® SureGro™ Cell and Tissue Culture Plastics

Canales

Diagnóstico Molecular

ver canal
Imagen: una nueva herramienta mejora la detección de mutaciones genéticas ocultas (foto cortesía de 123RF)

Herramienta computacional avanzada abre camino a pruebas diagnósticas para detectar mutaciones genéticas ocultas

La identificación de mutaciones genéticas a nivel proteico ha sido durante mucho tiempo una barrera en el campo de la proteogenómica, lo que limita la capacidad de los científicos... Más

Inmunología

ver canal
Imagen: la inmunidad de células T podría ser un marcador para el tratamiento temprano del Parkinson (foto cortesía de Shutterstock)

Células T en la sangre pueden detectar Parkinson años antes del diagnóstico

Diagnosticar la enfermedad de Parkinson antes de la aparición de síntomas motores sigue siendo uno de los mayores retos de la neurología. Los pacientes pueden pasar años, incluso... Más

Microbiología

ver canal
Imagen: Un prototipo de la prueba de flujo lateral (Foto cortesía de la Universidad de Exeter)

Prueba de flujo lateral POC detecta infección fúngica mortal más rápido que técnicas existentes

El diagnóstico de la mucormicosis, una infección fúngica agresiva y a menudo mortal, sigue siendo un gran desafío debido a la rápida progresión de la enfermedad y a la falta de herramientas diagnósticas... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.