Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
INTEGRA BIOSCIENCES AG

Deascargar La Aplicación Móvil




Microscopios en teléfonos inteligentes se transforman en dispositivos de laboratorio

Por el equipo editorial de LabMedica en español
Actualizado el 23 May 2018
Imagen: Los dispositivos impresos en 3D pueden capturar imágenes microscópicas cuando se conectan a la lente de una cámara de un teléfono inteligente (Fotografía cortesía del Grupo de Investigación Ozcan/UCLA).
Imagen: Los dispositivos impresos en 3D pueden capturar imágenes microscópicas cuando se conectan a la lente de una cámara de un teléfono inteligente (Fotografía cortesía del Grupo de Investigación Ozcan/UCLA).
Los teléfonos móviles han facilitado la creación de tecnologías de adquisición de imágenes y detección rentables y de campo que se acercan al desempeño de los instrumentos de laboratorio. Sin embargo, las interfaces de imágenes ópticas de los teléfonos móviles no están diseñadas para microscopía y producen distorsiones en las imágenes microscópicas.

Recientemente se ha demostrado que el aprendizaje profundo, una forma poderosa de inteligencia artificial, puede discernir y mejorar los detalles microscópicos en las fotos tomadas por los teléfonos inteligentes. La técnica mejora la resolución y los detalles de color de las imágenes de los teléfonos inteligentes tanto que se acercan a la calidad de las imágenes de microscopios de laboratorio.

Los bioingenieros de la Facultad de Ingeniería Samueli de la Universidad de California (Los Ángeles, CA; EUA) fotografiaron imágenes de muestras de tejido pulmonar, sangre y frotis de Papanicolaou, utilizando, inicialmente, un microscopio de laboratorio estándar y luego con un teléfono inteligente con el accesorio de microscopio impreso en 3D. Los científicos luego alimentaron los pares de imágenes correspondientes en un sistema informático que “aprende” cómo mejorar rápidamente las imágenes de los teléfonos móviles. El proceso se basa en un código de computadora basado en el aprendizaje profundo que habían desarrollado.

El uso del aprendizaje profundo para corregir tales distorsiones introducidas por los microscopios, basados en teléfonos móviles, facilita la producción de imágenes de alta resolución, eliminadas y corregidas por colores, igualando el desempeño de los microscopios de sobremesa con lentes objetivos de alta gama, extendiendo también su profundidad de campo limitada. Después de entrenar una red neuronal convolucional, obtuvieron imágenes de varias muestras, incluyendo cortes de tejido humano y de Papanicolaou y frotis de sangre, donde las imágenes grabadas estaban altamente comprimidas para facilitar el almacenamiento y la transmisión. La técnica utiliza accesorios que se pueden producir de forma económica con una impresora 3D, a menos de 100 dólares por pieza, frente a los miles de dólares que costaría comprar equipos de laboratorio que produzcan imágenes de calidad similar.

Aydogan Ozcan, PhD, profesor de Ingeniería Eléctrica e Informática y Bioingeniería, dijo: “Usando el aprendizaje profundo, nos propusimos cerrar la brecha en la calidad de la imagen entre los microscopios económicos basados en teléfonos móviles y los microscopios de mesa que son el estándar de oro que utilizan lentes de alta tecnología. Creemos que nuestro método es ampliamente aplicable a otros sistemas de microscopía de bajo costo que usan, por ejemplo, lentes o cámaras de bajo costo, y podría facilitar el reemplazo de microscopios de mesa de gama alta por alternativas móviles rentables”. El estudio fue publicado en línea el 15 de marzo de 2018 en la revista ACS Photonics.

Miembro Oro
Automatic CLIA Analyzer
Shine i9000
KIT DE PRUEBA POC PARA H.PYLORI
Hepy Urease Test
Automatic Hematology Analyzer
DH-800 Series
Miembro Oro
Automated MALDI-TOF MS System
EXS 3000

Canales

Química Clínica

ver canal
Imagen: la miniaturización de la compleja tecnología MS a escala de chip elimina el uso de equipos de laboratorio tradicionales (fotografía cortesía de Detect-ION)

Diagnóstico de aliento POC detecta patógenos causantes de neumonía

Pseudomonas aeruginosa es una causa importante de neumonía intrahospitalaria y asociada a la ventilación mecánica, especialmente en receptores de trasplante de pulmón y pacientes... Más

Diagnóstico Molecular

ver canal
Imagen: la tecnología molecular patentada de Scout ofrece resultados que coinciden con la PCR de alta complejidad el 99 % de las veces (fotografía cortesía de Scout Health)

Prueba molecular de ITS ofrece resultados rápidos POC para orientar tratamiento

Un diagnóstico molecular rápido y asequible para las infecciones de transmisión sexual (ITS) tiene el potencial de ser relevante a nivel mundial, en particular en entornos con recursos... Más

Hematología

ver canal
Imagen: las células leucémicas residuales pueden predecir la supervivencia a largo plazo en la leucemia mieloide aguda (fotografía cortesía de Shutterstock)

Pruebas de MRD podrían predecir supervivencia en pacientes con leucemia

La leucemia mieloide aguda es un cáncer sanguíneo agresivo que altera la producción normal de células sanguíneas y suele recaer incluso después de un tratamiento intensivo. Actualmente, los médicos carecen... Más

Inmunología

ver canal
Imagen: el análisis de sangre ADNlc no invasivo puede identificar eventos adversos de la terapia de puntos de control inmunitario en pacientes con cáncer (Fotografía cortesía de Elizabeth Cook)

Análisis sanguíneo podría detectar efectos adversos de inmunoterapia

Los inhibidores de puntos de control inmunitario han transformado el tratamiento del cáncer, pero también pueden desencadenar graves efectos adversos inmunitarios que dañan órganos... Más

Patología

ver canal
Imagen: determinación de EG añadido a jarabes medicinales: se muestran imágenes ampliadas de las almohadillas en las tiras. Los cuadros rojos muestran dónde se puede ver el color azul en la almohadilla cuando se observa visualmente (Arman, B.Y., Legge, I., Walsby-Tickle, J. et al. https://doi.org/10.1038/s41598-025-26670-1)

Pruebas rápidas y económicas pueden prevenir muertes infantiles por jarabes medicinales contaminados

Jarabes medicinales contaminados con sustancias químicas tóxicas han causado la muerte de cientos de niños en todo el mundo, lo que revela una grave deficiencia en el análisis... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.