Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
INTEGRA BIOSCIENCES AG

Deascargar La Aplicación Móvil




Modelo de IA destaca en análisis de de cánceres y datos de IHC no vistos

Por el equipo editorial de LabMedica en español
Actualizado el 19 Dec 2024
Imagen: El modelo de IA inmunohistoquímica universal (UIHC) Lunit SCOPE uIHC (Foto cortesía de Lunit)
Imagen: El modelo de IA inmunohistoquímica universal (UIHC) Lunit SCOPE uIHC (Foto cortesía de Lunit)

La inmunohistoquímica (IHC) desempeña un papel crucial en la oncología, ya que permite a los patólogos detectar y cuantificar la expresión de proteínas, lo que informa las decisiones sobre la terapia sistémica. A pesar de la existencia de varios algoritmos de IA para ayudar a puntuar las imágenes de IHC y mejorar la precisión diagnóstica, los modelos de IA actuales enfrentan desafíos importantes, incluida la dependencia de los datos y la falta de generalización. Estos modelos de IA-IHC requieren grandes conjuntos de datos de imágenes específicas de inmunotinción para el entrenamiento, que a menudo son difíciles de obtener, especialmente para pares de inmunotinción-objetivo desarrollados recientemente. Además, estos modelos tienen dificultades para analizar conjuntos de datos que difieren de su conjunto de entrenamiento en términos de inmunotinción o tipos de cáncer, lo que limita su eficacia en diversas indicaciones clínicas. Estas limitaciones resaltan la necesidad de soluciones de IA escalables capaces de proporcionar un análisis preciso en una amplia gama de tipos de cáncer e inmunotinciones. Un nuevo estudio ha demostrado ahora cómo un modelo de inteligencia artificial (IA) puede sobresalir en el análisis de diversos tipos de cáncer y tinciones de IHC, incluidos conjuntos de datos que nunca antes había encontrado, debido a un enfoque de entrenamiento innovador.

Lunit (Seúl, Corea del Sur) ha desarrollado el modelo de IA de inmunohistoquímica universal (uIHC), ahora comercializado como Lunit SCOPE uIHC, que permite el análisis avanzado de biomarcadores incluso a partir de inmunohistoquímica de un solo plexo, incluida la localización de manchas subcelulares, la puntuación de intensidad continua y la identificación del tipo de célula. En un estudio, Lunit comparó ocho modelos de aprendizaje profundo, incluidos cuatro modelos de cohorte única (entrenados con datos de una sola mancha o tipo de cáncer) y cuatro modelos de cohorte múltiple (entrenados en conjuntos de datos que abarcan múltiples manchas y tipos de cáncer), para evaluar su rendimiento en conjuntos de datos familiares y desconocidos. Los resultados, publicados en npj Precision Oncology, demostraron que el modelo uIHC puede generalizarse en diversos conjuntos de datos con alta precisión.

Los hallazgos subrayan el sólido desempeño del modelo en una amplia gama de tipos de cáncer e inmunotinciones, incluidas aquellas en las que no se había entrenado. La capacidad del modelo uIHC de generalizar en diferentes imágenes de IHC representa un avance significativo en la patología digital. Al reducir la necesidad de grandes conjuntos de datos específicos de tinciones, este modelo facilita el análisis escalable y eficiente de biomarcadores, lo cual es crucial para el diagnóstico clínico y el desarrollo de fármacos. Esta capacidad es particularmente beneficiosa para evaluar nuevos biomarcadores relacionados con terapias emergentes, lo que ayuda a abordar un importante obstáculo en la oncología de precisión.

"Nuestro modelo de IA de inmunohistoquímica universal resuelve un obstáculo práctico en los entornos de desarrollo: el manejo de tipos y tinciones de cáncer no vistos sin necesidad de anotación de datos adicionales", afirmó Brandon Suh, director ejecutivo de Lunit. "Al demostrar la eficacia de un enfoque de entrenamiento de múltiples cohortes, este estudio muestra cómo la IA se puede adaptar a las complejidades del mundo real, ofreciendo precisión y escalabilidad. Con el lanzamiento de Lunit SCOPE uIHC, estamos permitiendo que los investigadores y los médicos se concentren en lo que realmente importa: mejorar la atención al paciente y acelerar la innovación terapéutica".

Enlaces relacionados:
Lunit

Miembro Oro
Blood Gas Analyzer
Stat Profile pHOx
KIT DE PRUEBA POC PARA H.PYLORI
Hepy Urease Test
Pipette
Accumax Smart Series
CBM Analyzer
Complete Blood Morphology (CBM) Analyzer

Canales

Química Clínica

ver canal
Imagen: la miniaturización de la compleja tecnología MS a escala de chip elimina el uso de equipos de laboratorio tradicionales (fotografía cortesía de Detect-ION)

Diagnóstico de aliento POC detecta patógenos causantes de neumonía

Pseudomonas aeruginosa es una causa importante de neumonía intrahospitalaria y asociada a la ventilación mecánica, especialmente en receptores de trasplante de pulmón y pacientes... Más

Diagnóstico Molecular

ver canal
Imagen: una prueba de biomarcadores sanguíneos ofrece un pronóstico más claro después de un paro cardíaco (fotografía cortesía de Adobe Stock)

Biomarcador sanguíneo mejora pronóstico de lesión cerebral temprana tras paro cardíaco

Tras un paro cardíaco, muchos pacientes permanecen inconscientes durante días, lo que deja a médicos y familiares con la incertidumbre de si es posible una recuperación significativa.... Más

Hematología

ver canal
Imagen: las células leucémicas residuales pueden predecir la supervivencia a largo plazo en la leucemia mieloide aguda (fotografía cortesía de Shutterstock)

Pruebas de MRD podrían predecir supervivencia en pacientes con leucemia

La leucemia mieloide aguda es un cáncer sanguíneo agresivo que altera la producción normal de células sanguíneas y suele recaer incluso después de un tratamiento intensivo. Actualmente, los médicos carecen... Más

Inmunología

ver canal
Imagen: el análisis de sangre ADNlc no invasivo puede identificar eventos adversos de la terapia de puntos de control inmunitario en pacientes con cáncer (Fotografía cortesía de Elizabeth Cook)

Análisis sanguíneo podría detectar efectos adversos de inmunoterapia

Los inhibidores de puntos de control inmunitario han transformado el tratamiento del cáncer, pero también pueden desencadenar graves efectos adversos inmunitarios que dañan órganos... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.