Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
Werfen

Deascargar La Aplicación Móvil




Modelo de IA destaca en análisis de de cánceres y datos de IHC no vistos

Por el equipo editorial de LabMedica en español
Actualizado el 19 Dec 2024
Imagen: El modelo de IA inmunohistoquímica universal (UIHC) Lunit SCOPE uIHC (Foto cortesía de Lunit)
Imagen: El modelo de IA inmunohistoquímica universal (UIHC) Lunit SCOPE uIHC (Foto cortesía de Lunit)

La inmunohistoquímica (IHC) desempeña un papel crucial en la oncología, ya que permite a los patólogos detectar y cuantificar la expresión de proteínas, lo que informa las decisiones sobre la terapia sistémica. A pesar de la existencia de varios algoritmos de IA para ayudar a puntuar las imágenes de IHC y mejorar la precisión diagnóstica, los modelos de IA actuales enfrentan desafíos importantes, incluida la dependencia de los datos y la falta de generalización. Estos modelos de IA-IHC requieren grandes conjuntos de datos de imágenes específicas de inmunotinción para el entrenamiento, que a menudo son difíciles de obtener, especialmente para pares de inmunotinción-objetivo desarrollados recientemente. Además, estos modelos tienen dificultades para analizar conjuntos de datos que difieren de su conjunto de entrenamiento en términos de inmunotinción o tipos de cáncer, lo que limita su eficacia en diversas indicaciones clínicas. Estas limitaciones resaltan la necesidad de soluciones de IA escalables capaces de proporcionar un análisis preciso en una amplia gama de tipos de cáncer e inmunotinciones. Un nuevo estudio ha demostrado ahora cómo un modelo de inteligencia artificial (IA) puede sobresalir en el análisis de diversos tipos de cáncer y tinciones de IHC, incluidos conjuntos de datos que nunca antes había encontrado, debido a un enfoque de entrenamiento innovador.

Lunit (Seúl, Corea del Sur) ha desarrollado el modelo de IA de inmunohistoquímica universal (uIHC), ahora comercializado como Lunit SCOPE uIHC, que permite el análisis avanzado de biomarcadores incluso a partir de inmunohistoquímica de un solo plexo, incluida la localización de manchas subcelulares, la puntuación de intensidad continua y la identificación del tipo de célula. En un estudio, Lunit comparó ocho modelos de aprendizaje profundo, incluidos cuatro modelos de cohorte única (entrenados con datos de una sola mancha o tipo de cáncer) y cuatro modelos de cohorte múltiple (entrenados en conjuntos de datos que abarcan múltiples manchas y tipos de cáncer), para evaluar su rendimiento en conjuntos de datos familiares y desconocidos. Los resultados, publicados en npj Precision Oncology, demostraron que el modelo uIHC puede generalizarse en diversos conjuntos de datos con alta precisión.

Los hallazgos subrayan el sólido desempeño del modelo en una amplia gama de tipos de cáncer e inmunotinciones, incluidas aquellas en las que no se había entrenado. La capacidad del modelo uIHC de generalizar en diferentes imágenes de IHC representa un avance significativo en la patología digital. Al reducir la necesidad de grandes conjuntos de datos específicos de tinciones, este modelo facilita el análisis escalable y eficiente de biomarcadores, lo cual es crucial para el diagnóstico clínico y el desarrollo de fármacos. Esta capacidad es particularmente beneficiosa para evaluar nuevos biomarcadores relacionados con terapias emergentes, lo que ayuda a abordar un importante obstáculo en la oncología de precisión.

"Nuestro modelo de IA de inmunohistoquímica universal resuelve un obstáculo práctico en los entornos de desarrollo: el manejo de tipos y tinciones de cáncer no vistos sin necesidad de anotación de datos adicionales", afirmó Brandon Suh, director ejecutivo de Lunit. "Al demostrar la eficacia de un enfoque de entrenamiento de múltiples cohortes, este estudio muestra cómo la IA se puede adaptar a las complejidades del mundo real, ofreciendo precisión y escalabilidad. Con el lanzamiento de Lunit SCOPE uIHC, estamos permitiendo que los investigadores y los médicos se concentren en lo que realmente importa: mejorar la atención al paciente y acelerar la innovación terapéutica".

Enlaces relacionados:
Lunit

New
Miembro Oro
Clinical Drug Testing Panel
DOA Urine MultiPlex
KIT DE PRUEBA POC PARA H.PYLORI
Hepy Urease Test
Automatic CLIA Analyzer
Shine i9000
Human Estradiol Assay
Human Estradiol CLIA Kit

Canales

Química Clínica

ver canal
Imagen: una técnica rápida de espectrometría de masas permite la detección de medicamentos casi en tiempo real en entornos de atención de emergencia (Boccuzzi, S. et al., Analyst 151, 741–748 (2026). DOI: 10.1039/D5AN01148E)

Método rápido de análisis sanguíneo permite decisiones más seguras en emergencias por medicamentos

La intoxicación aguda por drogas recreativas es un motivo frecuente de visitas a urgencias; sin embargo, los médicos rara vez tienen acceso a resultados toxicológicos confirmatorios... Más

Diagnóstico Molecular

ver canal
Imagen: el ensayo para estreptococo del grupo A LIAISON NES está diseñado para su uso en el sistema de diagnóstico molecular LIAISON NES POC (fotografía cortesía de Diasorin)

Prueba molecular de estreptococo A ofrece resultados definitivos en POC en 15 minutos

La faringitis estreptocócica es una infección bacteriana causada por el estreptococo del grupo A (EGA). Es una de las principales causas bacterianas de faringitis aguda, especialmente en... Más

Inmunología

ver canal
Imagen: las células tumorales circulantes aisladas de muestras de sangre podrían ayudar a guiar las decisiones sobre inmunoterapia (fotografía cortesía de Shutterstock)

Análisis de sangre identifica pacientes con cáncer pulmonar beneficiarios de fármaco de inmunoterapia

El cáncer de pulmón de células pequeñas (CPCP) es una enfermedad agresiva con opciones de tratamiento limitadas, e incluso las inmunoterapias recientemente aprobadas no benefician... Más

Microbiología

ver canal
Imagen: la tecnología basada en CRISPR elimina elementos resistentes a los antibióticos de poblaciones de bacterias (fotografía cortesía de Bier Lab/UC San Diego)

Tecnología con CRISPR neutraliza bacterias resistentes a antibióticos

La resistencia a los antibióticos se ha convertido en una crisis sanitaria mundial, con proyecciones que estiman más de 10 millones de muertes al año para 2050 a medida que las &q... Más
Copyright © 2000-2026 Globetech Media. All rights reserved.