Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Please note that the LabMedica website is also available in a complete English version
Presenta Sitios para socios Información LinkXpress
Ingresar
Publique su anuncio con nosotros
PURITAN MEDICAL

Deascargar La Aplicación Móvil




Eventos

ATENCIÓN: Debido a la EPIDEMIA DE CORONAVIRUS, ciertos eventos están siendo reprogramados para una fecha posterior o cancelados por completo. Verifique con el organizador del evento o el sitio web antes de planificar cualquier evento próximo.

Método de luz láser utiliza imágenes asistidas por IA para identificar bacterias en fluidos

Por el equipo editorial de LabMedica en español
Actualizado el 08 Mar 2023
Print article
Imagen: Detalles de los puntos impresos en un portaobjetos recubiert de oro (Fotografía cortesía de la Universidad de Stanford)
Imagen: Detalles de los puntos impresos en un portaobjetos recubiert de oro (Fotografía cortesía de la Universidad de Stanford)

Las técnicas de cultivo tradicionales comúnmente utilizadas a menudo requieren varias horas o incluso días para completarse. Ahora, un enfoque revolucionario promete ofrecer análisis microbianos más rápidos, más precisos y rentables de casi cualquier fluido que se desee analizar en busca de microbios en un instante.

Científicos de la Universidad de Stanford (Stanford, CA, EUA) crearon una adaptación innovadora de la tecnología en una antigua impresora de inyección de tinta y la combinaron con imágenes asistidas por IA para desarrollar una forma más rápida y económica de detectar bacterias en la sangre, aguas residuales y más. El método consiste en hacer brillar un láser sobre una gota de sangre, moco o aguas residuales, y luego usar la luz que se refleja para identificar positivamente bacterias en la muestra. La nueva prueba se puede realizar en cuestión de minutos y ofrece la esperanza de una detección rápida y mejorada de infecciones, una utilización más eficaz de antibióticos, productos alimenticios más seguros, vigilancia ambiental mejorada y procesos de desarrollo de fármacos más rápidos.

La novedad de este descubrimiento no radica en el hecho de que las bacterias posean huellas espectrales únicas, algo que se ha establecido durante años, sino en cómo el equipo de investigación ha logrado extraer estos espectros en medio de la cegadora matriz de luz que emana de cada muestra. Un solo mililitro de sangre puede contener miles de millones de células, de las cuales solo una pequeña fracción puede ser microbios. Por lo tanto, el desafío fue identificar una forma de distinguir y amplificar exclusivamente la luz que emana únicamente de las bacterias. El equipo siguió diferentes métodos científicos, combinando una tecnología informática de décadas de antigüedad, la impresora de inyección de tinta, con dos de las tecnologías más avanzadas de nuestros tiempos, la inteligencia artificial y las nanopartículas.

Los investigadores encontraron una solución a las dificultades de manipular muestras biológicas modificando la impresora para que utilice pulsos acústicos con el fin de poner las muestras en papel. Este método da como resultado que cada punto de sangre impreso tenga un volumen de solo dos billonésimas de litro, lo que los hace increíblemente pequeños, más de mil millones de veces más pequeños que una gota de lluvia. Debido a su pequeño tamaño, estas gotitas pueden contener solo unas pocas docenas de células. Para mejorar el proceso de detección de bacterias, los investigadores infundieron las muestras con nanovarillas de oro, que actúan como antenas que atraen la luz láser hacia cualquier bacteria presente y amplifican la señal hasta 1.500 veces su fuerza original. Con el aislamiento y la amplificación apropiados, los espectros bacterianos se destacan claramente para la identificación. Los investigadores también utilizaron el aprendizaje automático para analizar los espectros de cada punto impreso e identificar cualquier firma reveladora de bacterias en la muestra.

“Podemos descubrir no solo que hay bacterias presentes, sino específicamente qué bacterias están en la muestra: E. coli, Staphylococcus, Streptococcus, Salmonella, ántrax y más”, dijo Jennifer Dionne, profesora asociada de ciencia e ingeniería de materiales y, por cortesía, de radiología de la Universidad de Stanford. “Cada microbio tiene su propia huella óptica única. Es como el código genético y proteómico garabateado a la luz”.

Enlaces relacionados:
Universidad Stanford

Flocked Swab
HydraFlock and PurFlock Ultra
Proveedor de oro
UNIDAD DE TINCIÓN AUTOMATIZADA
RAL Stainer
New
Spectrophotometer
UVILINE 9300
New
Auto Immunochemistry System
AFIAS-10

Print article

Canales

Química Clínica

ver canal
Imagen: Celdas electroquímicas grabadas con láser en depresor lingual de madera mide glucosa y nitrito en saliva (Fotografía cortesía de Analytical Chemistry)

Depresor lingual de madera fabricado con biosensor mide glucosa y nitrito en saliva

Los médicos suelen utilizar depresores linguales para examinar la boca y la garganta de un paciente. Sin embargo, es difícil imaginar que esta simple herramienta de madera pueda evaluar activamente... Más

Diagnóstico Molecular

ver canal
Imagen: El nuevo algoritmo puede predecir la enfermedad renal diabética (Fotografía cortesía de Freepix)

Algoritmo de IA predice enfermedad renal diabética a través de análisis de sangre

La diabetes es reconocida mundialmente como el principal contribuyente a la insuficiencia renal. Se han logrado avances importantes en el diseño de tratamientos para la enfermedad renal en pacientes... Más

Hematología

ver canal
Imagen: Los analizadores de hematología de Atellica HEMA 570 y 580 eliminan las barreras del flujo de trabajo (Fotografía cortesía de Siemens)

Analizadores de hematología de próxima generación eliminan obstáculos del flujo de trabajo y alcanzan un rendimiento rápido

Las pruebas de hematología son un aspecto crítico de la atención del paciente, se utilizan para establecer la línea de base de salud de un paciente, hacer seguimiento del progreso... Más

Patología

ver canal
Imagen: navify Digital Solutions puede ayudar a los laboratorios a mitigar desafíos de calidad únicos (Fotografía cortesía de Roche)

Solución digital basada en la nube permite a laboratorios hacer seguimiento de muestras de prueba durante todo el proceso de diagnóstico

El diagnóstico de una enfermedad implica un minucioso procedimiento de seguimiento de la muestra diagnóstica de un paciente a lo largo de todo su recorrido, lo que ayuda a la toma de decisiones... Más

Tecnología

ver canal
El biosensor electrónico  utiliza aptámeros de ADN para detectar biomarcadores en muestras de sangre completa (Fotografía cortesía de Freepik)

Biosensor electrónico detecta biomarcadores en muestras de sangre completa sin agregar reactivos

La ausencia de herramientas bioanalíticas robustas, confiables y fáciles de usar para el diagnóstico temprano y oportuno de enfermedades cardiovasculares, particularmente el paro ... Más

Industria

ver canal
Imagen: Se espera que el mercado global de diagnóstico de hemostasia alcance los USD 3.950 millones de dólares para 2025 (Fotografía cortesía de Freepik)

Mercado mundial de diagnóstico de hemostasia impulsado por aumento de procedimientos quirúrgicos invasivos

Una lesión o cirugía genera de forma natural hemorragias en los seres vivos, que deben detenerse para evitar una pérdida excesiva de sangre. El cuerpo humano implementa un mecanismo... Más
Copyright © 2000-2023 Globetech Media. All rights reserved.