Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
Werfen

Deascargar La Aplicación Móvil




Cáncer de próstata se diagnostica mejor usando la inteligencia artificial

Por el equipo editorial de LabMedica en español
Actualizado el 29 Jan 2020
El cáncer de próstata es un tipo de cáncer frecuente, pero no siempre agresivo: mueren más hombres con cáncer de próstata que por cáncer de próstata. Más...
Sin embargo, su tratamiento tiene muchas consecuencias para la calidad de vida de los pacientes, por lo que poder determinar la agresividad es un paso importante para elegir un tratamiento.

Para determinar la agresividad del cáncer, se toman biopsias de la próstata, que son cualificadas por un patólogo. Este “puntaje de Gleason” se usa, a continuación, para clasificar las biopsias en cinco grupos, los Grupos de Grado de Gleason, que indican el riesgo de morir debido al cáncer de próstata. Sin embargo, este es un proceso subjetivo; si el paciente es tratado y cómo, puede depender del patólogo que evalúa el tejido.

Un equipo de científicos del Centro Médico de la Universidad Radboud (Nijmegen, Países Bajos) desarrolló un sistema de IA que examina esas biopsias de la misma manera en que lo hace un patólogo. El sistema de IA también determina el puntaje de Gleason, y luego el sistema puede clasificar una biopsia de acuerdo con los Grupos de Grado de Gleason. Mediante el aprendizaje profundo, el sistema examinó miles de imágenes de biopsias para saber qué es una próstata sana y cómo se ve el tejido de cáncer de próstata más o menos agresivo. Se usó una técnica de etiquetado semiautomático para evitar la necesidad de anotaciones manuales por parte de los patólogos, utilizando los informes de los patólogos como el estándar de referencia durante el entrenamiento. El sistema fue desarrollado para delinear glándulas individuales, asignar patrones de crecimiento de Gleason y determinar el grado a nivel de biopsia.

Los investigadores recolectaron 5.759 biopsias de 1.243 pacientes. El sistema desarrollado logró un alto acuerdo con el estándar de referencia y obtuvo un puntaje alto en los umbrales de decisión clínica: benigno versus maligno (área bajo la curva 0,99), grupo de grado de 2 o más (0,978) y grupo de grado 3 o más (0,974). En un experimento de observación, el sistema de aprendizaje profundo obtuvo una puntuación más alta (kappa 0,854) que el panel (kappa mediana 0,819), superando a 10 de 15 observadores patólogos. En el conjunto de datos de prueba externo, el sistema obtuvo una concordancia alta con el estándar de referencia establecido independientemente por dos patólogos (kappa cuadrático de Cohen 0,723 y 0,707) y dentro de la variabilidad interobservador (kappa 0,71).

Los autores concluyeron que su sistema automatizado de aprendizaje profundo logró un desempeño similar al de los patólogos para la clasificación de Gleason y podría contribuir, potencialmente, al diagnóstico de cáncer de próstata. El sistema podría ayudar potencialmente a los patólogos mediante el examen de biopsias, proporcionando segundas opiniones sobre el grado y presentando mediciones cuantitativas de los porcentajes de volumen. El estudio fue publicado el 8 de enero de 2020 en la revista The Lancet Oncology.

Enlace relacionado:
Centro Médico de la Universidad Radboud


Miembro Oro
PIPETA HÍBRIDA
SWITCH
KIT DE PRUEBA POC PARA H.PYLORI
Hepy Urease Test
Miembro Oro
SISTEMA DE RECOLECCIÓN Y TRANSPORTE
PurSafe Plus®
Automatic Hematology Analyzer
DH-800 Series
Lea el artículo completo al registrarse hoy mismo, es GRATIS! ¡Es GRATUITO!
Regístrese GRATIS a LabMedica.es y acceda a las noticias y eventos que afectan al mundo del Laboratorio.
  • Edición gratuita de la versión digital de Lab Medica en Español enviado regularmente por email
  • Revista impresa gratuita de la revista Lab Medica en Español (disponible únicamente fuera de EUA y Canadá).
  • Acceso gratuito e ilimitado a ediciones anteriores de Lab Medica en Español digital
  • Boletín de Lab Medica en Español gratuito cada dos semanas con las últimas noticias
  • Noticias de último momento enviadas por email
  • Acceso gratuito al calendario de eventos
  • Acceso gratuito a los servicios de nuevos productos de LinkXpress
  • Registrarse es sencillo y GRATUITO!
Haga clic aquí para registrarse








Canales

Química Clínica

ver canal
Imagen: una técnica rápida de espectrometría de masas permite la detección de medicamentos casi en tiempo real en entornos de atención de emergencia (Boccuzzi, S. et al., Analyst 151, 741–748 (2026). DOI: 10.1039/D5AN01148E)

Método rápido de análisis sanguíneo permite decisiones más seguras en emergencias por medicamentos

La intoxicación aguda por drogas recreativas es un motivo frecuente de visitas a urgencias; sin embargo, los médicos rara vez tienen acceso a resultados toxicológicos confirmatorios... Más

Inmunología

ver canal
Imagen: las células tumorales circulantes aisladas de muestras de sangre podrían ayudar a guiar las decisiones sobre inmunoterapia (fotografía cortesía de Shutterstock)

Análisis de sangre identifica pacientes con cáncer pulmonar beneficiarios de fármaco de inmunoterapia

El cáncer de pulmón de células pequeñas (CPCP) es una enfermedad agresiva con opciones de tratamiento limitadas, e incluso las inmunoterapias recientemente aprobadas no benefician... Más

Microbiología

ver canal
Imagen: la tecnología basada en CRISPR elimina elementos resistentes a los antibióticos de poblaciones de bacterias (fotografía cortesía de Bier Lab/UC San Diego)

Tecnología con CRISPR neutraliza bacterias resistentes a antibióticos

La resistencia a los antibióticos se ha convertido en una crisis sanitaria mundial, con proyecciones que estiman más de 10 millones de muertes al año para 2050 a medida que las &q... Más
Copyright © 2000-2026 Globetech Media. All rights reserved.