Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
INTEGRA BIOSCIENCES AG

Deascargar La Aplicación Móvil




Método basado en IA podría reemplazar la tinción química de muestras de tejido histopatológico

Por el equipo editorial de LabMedica en español
Actualizado el 25 Apr 2023

Durante más de un siglo, la tinción química ha sido una técnica fundamental en el estudio de la histopatología, particularmente en áreas como el diagnóstico del cáncer. Más...

Sin embargo, uno de los principales inconvenientes de la tinción química es su naturaleza irreversible, que a menudo restringe el uso de la muestra en otras pruebas o experimentos. Para abordar esta limitación, los investigadores han desarrollado un método basado en inteligencia artificial (IA) para teñir virtualmente muestras de tejido histopatológico, reemplazando potencialmente la necesidad de tinción química.

Un estudio dirigido por investigadores de la Universidad de Finlandia Oriental (Kuopio, Finlandia) dio como resultado el desarrollo de un método de IA que genera imágenes computacionales muy semejantes a las obtenidas a través de la tinción química real. Estas imágenes virtualmente teñidas pueden luego examinarse para determinar la morfología del tejido. La técnica de tinción virtual no solo reduce la carga química y el trabajo manual requerido para el procesamiento de muestras, sino que también permite que el tejido se use para otros fines más allá de la tinción. Una ventaja clave del método propuesto es que solo requiere un microscopio de luz estándar y una computadora apropiada, sin necesidad de infraestructura o hardware especializado.

El rápido avance de las redes neuronales profundas, que aprenden de grandes cantidades de datos, ha revolucionado el análisis de imágenes biomédicas. Estos métodos no solo son adecuados para las tareas tradicionales de análisis de imágenes, como la interpretación, sino que también se destacan en las transformaciones de imagen a imagen. La tinción virtual ejemplifica este tipo de tarea y el equipo de investigación lo demostró de manera efectiva.

“Los resultados son ampliamente aplicables. Hay muchos temas para la investigación de seguimiento, y los métodos computacionales aún se pueden mejorar. Sin embargo, ya podemos imaginar varias áreas de aplicación donde la tinción virtual puede tener un gran impacto en la histopatología”, dice el profesor asociado Pekka Ruusuvuori de la Universidad de Turku, quien dirigió la parte computacional del estudio.

“Las redes neuronales profundas son capaces de funcionar a un nivel que no podíamos imaginar hace un tiempo. La tinción virtual basada en inteligencia artificial puede tener un gran impacto en el procesamiento de muestras más eficiente en histopatología”, dijo el investigador doctoral Umair Khan de la Universidad de Turku, quien fue el desarrollador principal.

Enlaces relacionados:
Universidad de Finlandia Oriental  


Miembro Oro
Pharmacogenetics Panel
VeriDose Core Panel v2.0
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Ultra-Low Temperature Freezer
iUF118-GX
New
Luteinizing Hormone Assay
DRG LH-Serum ELISA Kit
Lea el artículo completo al registrarse hoy mismo, es GRATIS! ¡Es GRATUITO!
Regístrese GRATIS a LabMedica.es y acceda a las noticias y eventos que afectan al mundo del Laboratorio.
  • Edición gratuita de la versión digital de Lab Medica en Español enviado regularmente por email
  • Revista impresa gratuita de la revista Lab Medica en Español (disponible únicamente fuera de EUA y Canadá).
  • Acceso gratuito e ilimitado a ediciones anteriores de Lab Medica en Español digital
  • Boletín de Lab Medica en Español gratuito cada dos semanas con las últimas noticias
  • Noticias de último momento enviadas por email
  • Acceso gratuito al calendario de eventos
  • Acceso gratuito a los servicios de nuevos productos de LinkXpress
  • Registrarse es sencillo y GRATUITO!
Haga clic aquí para registrarse








Canales

Química Clínica

ver canal
Imagen: la QIP-MS podría predecir y detectar la recaída del mieloma más temprano en comparación con las técnicas utilizadas actualmente (foto cortesía de Adobe Stock)

Monitorización con espectrometría de masas predice e identifica recaída temprana del mieloma

El mieloma, un tipo de cáncer que afecta la médula ósea, es actualmente incurable, aunque muchos pacientes pueden vivir más de 10 años tras el diagnóstico.... Más

Inmunología

ver canal
Imagen: la prueba de células madre del cáncer puede elegir con precisión tratamientos más efectivos (fotografía cortesía de la Universidad de Cincinnati)

Prueba de células madre predice resultado del tratamiento en cáncer de ovario resistente al platino

El cáncer de ovario epitelial suele responder inicialmente a la quimioterapia, pero con el tiempo, el tumor desarrolla resistencia a la terapia, lo que provoca su recrecimiento. Esta resistencia... Más

Tecnología

ver canal
Imagen: Ziyang Wang y Shengxi Huang han desarrollado una herramienta que permite ideas precisas sobre proteínas virales y marcadores de enfermedades cerebrales (foto cortesía de Jeff Fitlow/Universidad Rice)

Algoritmo de firma ligera permite diagnósticos médicos más rápidos y precisos

Cada material o molécula interactúa con la luz de forma única, creando un patrón distintivo, similar a una huella dactilar. La espectroscopia óptica, que consiste en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.