Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros

Deascargar La Aplicación Móvil




Nuevo modelo de IA predice efectos de variantes genéticas en enfermedades específicas

Por el equipo editorial de LabMedica en español
Actualizado el 03 Apr 2025
Imagen: el modelo AI identifica con precisión las mutaciones genéticas dañinas para diagnósticos y tratamientos precisos (foto cortesía de 123RF)
Imagen: el modelo AI identifica con precisión las mutaciones genéticas dañinas para diagnósticos y tratamientos precisos (foto cortesía de 123RF)

En los últimos años, la inteligencia artificial (IA) ha mejorado considerablemente nuestra capacidad para identificar un gran número de variantes genéticas en poblaciones cada vez más numerosas. Sin embargo, hasta la mitad de estas variantes se clasifican como de significado incierto, lo que indica que su papel en la causa de una enfermedad, si lo hay, sigue sin estar claro. Los modelos de IA existentes son eficaces para distinguir qué variantes genéticas tienen mayor probabilidad de afectar negativamente la estructura o función de las proteínas, lo que podría provocar enfermedades. Sin embargo, estos modelos carecen de la capacidad de vincular una variante genética específica con una enfermedad en particular, lo que limita su utilidad en el diagnóstico y el tratamiento. Ahora, investigadores han desarrollado un nuevo modelo de IA capaz de identificar con precisión mutaciones genéticas dañinas para llegar a diagnósticos y tratamientos más precisos.

El novedoso modelo de IA, denominado DYNA, fue desarrollado por investigadores de Cedars-Sinai (Los Ángeles, CA, EUA) y diferencia con precisión entre variaciones genéticas dañinas e inocuas, lo que mejora la capacidad de los médicos para diagnosticar enfermedades. Esta nueva herramienta tiene el potencial de allanar el camino hacia una medicina más específica y personalizada. En una investigación publicada en la revista Nature Machine Intelligence, revisada por pares, el equipo demostró que DYNA supera a los modelos de IA existentes en la predicción de qué cambios en el ADN, comúnmente conocidos como mutaciones, están relacionados con afecciones cardiovasculares específicas y otras enfermedades.

Para crear DYNA, los investigadores emplearon un tipo de IA llamada red neuronal siamesa para refinar dos modelos de IA existentes. Estos modelos modificados se utilizaron para predecir la probabilidad de que variantes genéticas específicas se asocien con afecciones como la miocardiopatía (agrandamiento, endurecimiento o debilitamiento del músculo cardíaco) y la arritmia (latidos cardíacos irregulares). Posteriormente, el equipo comparó los resultados de DYNA con datos de ClinVar, una prestigiosa base de datos pública que recopila informes de variaciones genéticas relacionadas con enfermedades. La comparación reveló que DYNA correlacionó correctamente las variantes genéticas con las enfermedades correspondientes.

“Para los investigadores, DYNA ofrece un marco flexible para estudiar diversas enfermedades genéticas”, afirmó el Dr. Jason Moore, autor colaborador del estudio y director del Departamento de Biomedicina Computacional de Cedars-Sinai. “En el futuro, se podría usar DYNA para ofrecer a los profesionales sanitarios herramientas avanzadas que permitan adaptar los diagnósticos y tratamientos al perfil genético de cada individuo”.

New
Miembro Oro
Genetic Type 1 Diabetes Risk Test
T1D GRS Array
KIT DE PRUEBA POC PARA H.PYLORI
Hepy Urease Test
Clinical Chemistry System
P780
Automated MALDI-TOF MS System
EXS 3000

Canales

Diagnóstico Molecular

ver canal
Imagen: el panel de moho FungiFlex identifica más del 95 % de los hongos patógenos invasivos más comunes en los EUA (fotografía cortesía de Shutterstock)

Análisis sanguíneo promete respuestas más rápidas a infecciones fúngicas mortales

Las infecciones invasivas por moho causadas por hongos filamentosos se encuentran entre las enfermedades fúngicas más difíciles de diagnosticar, ya que los organismos crecen lentamente... Más

Inmunología

ver canal
Imagen: las células tumorales circulantes aisladas de muestras de sangre podrían ayudar a guiar las decisiones sobre inmunoterapia (fotografía cortesía de Shutterstock)

Análisis de sangre identifica pacientes con cáncer pulmonar beneficiarios de fármaco de inmunoterapia

El cáncer de pulmón de células pequeñas (CPCP) es una enfermedad agresiva con opciones de tratamiento limitadas, e incluso las inmunoterapias recientemente aprobadas no benefician... Más

Microbiología

ver canal
Imagen: la plataforma de diagnóstico de precisión dSHERLOCK permite la evaluación cuantitativa de infecciones por hongos en 20 minutos (fotografía cortesía del Instituto Wyss de la Universidad de Harvard)

Plataforma de IA permite detección rápida de patógenos de C. auris resistentes a fármacos

Las infecciones causadas por la levadura patógena Candida auris representan una amenaza significativa para los pacientes hospitalizados, en particular para aquellos con sistemas inmunitarios debilitados... Más
Copyright © 2000-2026 Globetech Media. All rights reserved.