Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
INTEGRA BIOSCIENCES AG

Deascargar La Aplicación Móvil




Nuevo modelo de IA predice efectos de variantes genéticas en enfermedades específicas

Por el equipo editorial de LabMedica en español
Actualizado el 03 Apr 2025
Imagen: el modelo AI identifica con precisión las mutaciones genéticas dañinas para diagnósticos y tratamientos precisos (foto cortesía de 123RF)
Imagen: el modelo AI identifica con precisión las mutaciones genéticas dañinas para diagnósticos y tratamientos precisos (foto cortesía de 123RF)

En los últimos años, la inteligencia artificial (IA) ha mejorado considerablemente nuestra capacidad para identificar un gran número de variantes genéticas en poblaciones cada vez más numerosas. Sin embargo, hasta la mitad de estas variantes se clasifican como de significado incierto, lo que indica que su papel en la causa de una enfermedad, si lo hay, sigue sin estar claro. Los modelos de IA existentes son eficaces para distinguir qué variantes genéticas tienen mayor probabilidad de afectar negativamente la estructura o función de las proteínas, lo que podría provocar enfermedades. Sin embargo, estos modelos carecen de la capacidad de vincular una variante genética específica con una enfermedad en particular, lo que limita su utilidad en el diagnóstico y el tratamiento. Ahora, investigadores han desarrollado un nuevo modelo de IA capaz de identificar con precisión mutaciones genéticas dañinas para llegar a diagnósticos y tratamientos más precisos.

El novedoso modelo de IA, denominado DYNA, fue desarrollado por investigadores de Cedars-Sinai (Los Ángeles, CA, EUA) y diferencia con precisión entre variaciones genéticas dañinas e inocuas, lo que mejora la capacidad de los médicos para diagnosticar enfermedades. Esta nueva herramienta tiene el potencial de allanar el camino hacia una medicina más específica y personalizada. En una investigación publicada en la revista Nature Machine Intelligence, revisada por pares, el equipo demostró que DYNA supera a los modelos de IA existentes en la predicción de qué cambios en el ADN, comúnmente conocidos como mutaciones, están relacionados con afecciones cardiovasculares específicas y otras enfermedades.

Para crear DYNA, los investigadores emplearon un tipo de IA llamada red neuronal siamesa para refinar dos modelos de IA existentes. Estos modelos modificados se utilizaron para predecir la probabilidad de que variantes genéticas específicas se asocien con afecciones como la miocardiopatía (agrandamiento, endurecimiento o debilitamiento del músculo cardíaco) y la arritmia (latidos cardíacos irregulares). Posteriormente, el equipo comparó los resultados de DYNA con datos de ClinVar, una prestigiosa base de datos pública que recopila informes de variaciones genéticas relacionadas con enfermedades. La comparación reveló que DYNA correlacionó correctamente las variantes genéticas con las enfermedades correspondientes.

“Para los investigadores, DYNA ofrece un marco flexible para estudiar diversas enfermedades genéticas”, afirmó el Dr. Jason Moore, autor colaborador del estudio y director del Departamento de Biomedicina Computacional de Cedars-Sinai. “En el futuro, se podría usar DYNA para ofrecer a los profesionales sanitarios herramientas avanzadas que permitan adaptar los diagnósticos y tratamientos al perfil genético de cada individuo”.

Miembro Oro
Hematology Analyzer
Medonic M32B
KIT DE PRUEBA POC PARA H.PYLORI
Hepy Urease Test
Clinical Chemistry System
P780
Alcohol Testing Device
Dräger Alcotest 7000

Canales

Química Clínica

ver canal
Imagen: la miniaturización de la compleja tecnología MS a escala de chip elimina el uso de equipos de laboratorio tradicionales (fotografía cortesía de Detect-ION)

Diagnóstico de aliento POC detecta patógenos causantes de neumonía

Pseudomonas aeruginosa es una causa importante de neumonía intrahospitalaria y asociada a la ventilación mecánica, especialmente en receptores de trasplante de pulmón y pacientes... Más

Diagnóstico Molecular

ver canal
Imagen: la tecnología molecular patentada de Scout ofrece resultados que coinciden con la PCR de alta complejidad el 99 % de las veces (fotografía cortesía de Scout Health)

Prueba molecular de ITS ofrece resultados rápidos POC para orientar tratamiento

Un diagnóstico molecular rápido y asequible para las infecciones de transmisión sexual (ITS) tiene el potencial de ser relevante a nivel mundial, en particular en entornos con recursos... Más

Hematología

ver canal
Imagen: las células leucémicas residuales pueden predecir la supervivencia a largo plazo en la leucemia mieloide aguda (fotografía cortesía de Shutterstock)

Pruebas de MRD podrían predecir supervivencia en pacientes con leucemia

La leucemia mieloide aguda es un cáncer sanguíneo agresivo que altera la producción normal de células sanguíneas y suele recaer incluso después de un tratamiento intensivo. Actualmente, los médicos carecen... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.