Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Please note that the LabMedica website is also available in a complete English version
Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
LGC Clinical Diagnostics

Deascargar La Aplicación Móvil




Prueba de sangre basada en IA detecta cáncer de ovario con 93 % de precisión

Por el equipo editorial de LabMedica en español
Actualizado el 13 Feb 2024
Print article
Imagen: Micrografía de un tumor de ovario mucinoso (Fotografía cortesía de los Institutos Nacionales de Salud)
Imagen: Micrografía de un tumor de ovario mucinoso (Fotografía cortesía de los Institutos Nacionales de Salud)

El cáncer de ovario, a menudo denominado el asesino silencioso, normalmente no presenta síntomas en sus etapas iniciales, lo que lleva a una detección tardía cuando el tratamiento se vuelve desafiante. El marcado contraste en las tasas de supervivencia resalta la necesidad urgente de un diagnóstico temprano: si bien las pacientes con cáncer de ovario en etapa avanzada tienen una tasa de supervivencia a cinco años de alrededor del 31 % después del tratamiento, la detección y el tratamiento tempranos pueden elevar esta tasa a más del 90 %. A pesar de más de tres décadas de investigación, desarrollar una prueba de diagnóstico temprano precisa para el cáncer de ovario ha resultado un desafío. Esta dificultad surge de los orígenes moleculares de la enfermedad, donde múltiples vías pueden conducir al mismo tipo de cáncer.

Los científicos del Centro Integrado de Investigación del Cáncer de Georgia Tech (CICR, Atlanta, GA, EUA) han logrado un gran avance al integrar el aprendizaje automático con información de metabolitos sanguíneos, desarrollando una prueba que puede detectar el cáncer de ovario con una precisión del 93 % en su grupo de estudio. Esta prueba supera a los métodos de detección existentes, especialmente en la identificación de enfermedades ováricas en etapa temprana entre mujeres clínicamente consideradas normales. Los investigadores han creado un nuevo método de diagnóstico, utilizando el perfil metabólico de una paciente para asignar una probabilidad más precisa de la presencia o ausencia de la enfermedad.

La espectrometría de masas, utilizada para identificar metabolitos en la sangre a través de su masa y carga, enfrenta una limitación: menos del 7 % de estos metabolitos en la sangre humana han sido caracterizados químicamente. Por lo tanto, identificar procesos moleculares específicos detrás del perfil metabólico de un individuo sigue siendo un desafío. Sin embargo, el equipo reconoció el potencial de utilizar la presencia de distintos metabolitos, detectados por espectrometría de masas, para crear modelos predictivos precisos mediante el aprendizaje automático. Este método es similar al uso de rasgos faciales individuales para desarrollar algoritmos de reconocimiento facial.

En su método innovador, los investigadores combinaron perfiles metabólicos con clasificadores de aprendizaje automático, logrando una precisión del 93 % en un estudio en el que participaron 564 mujeres de Georgia, Carolina del Norte, Filadelfia y el oeste de Canadá. Este grupo incluyó a 431 pacientes con cáncer de ovario activo y 133 mujeres sin la enfermedad. Los estudios en curso tienen como objetivo explorar la capacidad de la prueba para detectar enfermedades en etapas muy tempranas en mujeres asintomáticas. La visión para la aplicación clínica es un futuro en el que las personas con un perfil metabólico que indica una baja probabilidad de cáncer se sometan a un seguimiento anual, mientras que aquellas con puntuaciones que sugieren una alta probabilidad de cáncer de ovario reciban un seguimiento más frecuente o una derivación inmediata para pruebas de detección avanzadas.

"Este enfoque personalizado y probabilístico para el diagnóstico del cáncer es más informativo y preciso desde el punto de vista clínico que las pruebas binarias tradicionales (sí/no)", afirmó John McDonald, profesor emérito de la Facultad de Ciencias Biológicas, director fundador del CICR y autor correspondiente del estudio. "Representa una nueva dirección prometedora en la detección temprana del cáncer de ovario, y quizás también de otros cánceres".

Enlaces relacionados:
Georgia Tech

Miembro Oro
CONTROL DE CALIDAD DE TROPONINA T
Troponin T Quality Control
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
New
Liquid Based Cytology Production Machine
LBP-4032
New
Lab Sample Rotator
H5600 Revolver

Print article

Canales

Química Clínica

ver canal
Imagen: La nueva prueba basada en saliva para insuficiencia cardíaca mide dos biomarcadores en aproximadamente 15 minutos (foto cortesía de Trey Pittman)

Dispositivo de pruebas de saliva predice la insuficiencia cardíaca en 15 minutos

La insuficiencia cardíaca es una enfermedad grave en la que el músculo cardíaco no puede bombear suficiente sangre rica en oxígeno a todo el cuerpo. Se considera una de las... Más

Hematología

ver canal
Imagen: La tecnología de teléfonos inteligentes mide los niveles de hemoglobina en sangre de una foto digital del párpado interno (Foto cortesía de la Universidad de Purdue)

Tecnología de teléfonos inteligentes mide de forma no invasiva niveles de hemoglobina en sangre en POC

Las pruebas de hemoglobina en sangre se encuentran entre las pruebas de sangre que se realizan con más frecuencia, ya que los niveles de hemoglobina pueden brindar información vital sobre... Más

Inmunología

ver canal
Imagen: Bajo un microscopio, la reparación del ADN es visible como manchas verdes brillantes ("foci") en la célula de ADN teñida de azul. El naranja resalta las células cancerosas en crecimiento (Foto cortesía de WEHI)

Simple análisis sanguíneo podría detectar resistencia a fármacos en cáncer de ovario

Cada año, cientos de miles de mujeres en todo el mundo son diagnosticadas con cáncer de ovario y de mama. La terapia con inhibidores de PARP (PARPi) ha sido un gran avance en el tratamiento... Más

Microbiología

ver canal
Imagen: el dímero HNL puede ser una herramienta clínica novedosa y potencialmente útil en la administración de antibióticos en sepsis (Foto cortesía de Shutterstock)

Biomarcador sanguíneo único demuestra que controla eficazmente tratamiento de sepsis

La sepsis sigue siendo un problema creciente en todo el mundo, vinculado a altas tasas de mortalidad y morbilidad. El diagnóstico oportuno y preciso, junto con una terapia de apoyo eficaz, es esencial... Más

Patología

ver canal
Imagen: La arquitectura general, la entrada y la salida del CelloType (Foto cortesía de Nature Methods: DOI: 10.1038/s41592-024-02513-1)

Nueva tecnología de IA supera métodos tradicionales en segmentación de imágenes biomédicas

La ómica espacial es un campo emergente que integra técnicas de perfilado molecular como la genómica, la transcriptómica y la proteómica con información espacial, lo que permite a los investigadores determinar... Más
Copyright © 2000-2024 Globetech Media. All rights reserved.