Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
INTEGRA BIOSCIENCES AG

Deascargar La Aplicación Móvil




Desarrollan hardware optimizado para microscopios para la clasificación exacta de imágenes

Por el equipo editorial de LabMedica en español
Actualizado el 11 Dec 2019
Print article
Imagen: Se ha desarrollado un tipo nuevo de microscopio que utiliza un tazón con luces LED de varios colores y esquemas de iluminación producidos por el aprendizaje automático (Fotografía cortesía de la Universidad de Duke)
Imagen: Se ha desarrollado un tipo nuevo de microscopio que utiliza un tazón con luces LED de varios colores y esquemas de iluminación producidos por el aprendizaje automático (Fotografía cortesía de la Universidad de Duke)
A pesar de la automatización generalizada habilitada por el nuevo software de posprocesamiento, el diseño físico del microscopio estándar aun ha cambiado relativamente poco, ya que, en su mayor parte, todavía es un instrumento optimizado para que un espectador humano pueda mirar e inspeccionar lo que se coloca debajo.

Se ha desarrollado un microscopio que adapta sus ángulos de iluminación, colores y patrones a la vez que se enseña la configuración óptima necesaria para completar una tarea de diagnóstico determinada. En lugar de difundir luz blanca desde abajo para iluminar uniformemente la lámina, los ingenieros desarrollaron una fuente de luz en forma de tazón con LED integrados en toda su superficie. Esto permite que las muestras se iluminen desde diferentes ángulos hasta casi 90 grados con diferentes colores, lo que esencialmente proyecta sombras y resalta diferentes características de la muestra dependiendo del patrón de los LED utilizados.

Un equipo internacional de bioingenieros que trabaja con la Universidad de Duke (Durham NC, EUA) alimentó al microscopio con cientos de muestras de glóbulos rojos infectados con malaria, preparados como frotis delgados, en los que los cuerpos celulares permanecen enteros y se extienden idealmente en una sola capa en un portaobjetos de microscopio. Usando un tipo de algoritmo de aprendizaje automático llamado red neuronal convolucional, el microscopio aprendió qué características de la muestra eran más importantes para diagnosticar la malaria y la mejor manera de resaltarlas.

El algoritmo finalmente logró un patrón LED en forma de anillo de diferentes colores provenientes de ángulos relativamente altos. Si bien las imágenes resultantes son más ruidosas que una imagen de microscopio normal, resaltan el parásito de la malaria en un punto brillante y se clasifican correctamente aproximadamente el 90% de las veces. Los médicos capacitados y otros algoritmos de aprendizaje automático generalmente funcionan con una precisión de aproximadamente el 75%. El equipo también demostró que el microscopio funciona bien con preparaciones espesas de frotis de sangre, en las que los glóbulos rojos forman un fondo altamente no uniforme y se pueden romper. Para esta preparación, el algoritmo de aprendizaje automático tuvo éxito el 99% de las veces.

Roarke Horstmeyer, PhD, profesor asistente de ingeniería biomédica y autor principal del estudio, dijo: “Un microscopio estándar ilumina una muestra con la misma cantidad de luz proveniente de todas las direcciones, y esa iluminación se ha optimizado para los ojos humanos en cientos de años. Pero las computadoras pueden ver cosas que los humanos no pueden. Por lo tanto, no solo hemos rediseñado el hardware para proporcionar una amplia gama de opciones de iluminación, sino que hemos permitido que el microscopio optimice la iluminación por sí mismo”. El estudio fue publicado en la edición de noviembre de 2019 de la revista Biomedical Optics Express.

Enlace relacionado:
Universidad de Duke

Miembro Oro
Chagas Disease Test
CHAGAS Cassette
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Chagas Disease Test
LIAISON Chagas
New
C-Reactive Protein Assay
OneStep C-Reactive Protein (CRP) RapiCard InstaTest

Print article

Canales

Química Clínica

ver canal
Imagen: la QIP-MS podría predecir y detectar la recaída del mieloma más temprano en comparación con las técnicas utilizadas actualmente (foto cortesía de Adobe Stock)

Monitorización con espectrometría de masas predice e identifica recaída temprana del mieloma

El mieloma, un tipo de cáncer que afecta la médula ósea, es actualmente incurable, aunque muchos pacientes pueden vivir más de 10 años tras el diagnóstico.... Más

Inmunología

ver canal
Imagen: la prueba de células madre del cáncer puede elegir con precisión tratamientos más efectivos (fotografía cortesía de la Universidad de Cincinnati)

Prueba de células madre predice resultado del tratamiento en cáncer de ovario resistente al platino

El cáncer de ovario epitelial suele responder inicialmente a la quimioterapia, pero con el tiempo, el tumor desarrolla resistencia a la terapia, lo que provoca su recrecimiento. Esta resistencia... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.