Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
INTEGRA BIOSCIENCES AG

Deascargar La Aplicación Móvil




Desarrollan hardware optimizado para microscopios para la clasificación exacta de imágenes

Por el equipo editorial de LabMedica en español
Actualizado el 11 Dec 2019
Imagen: Se ha desarrollado un tipo nuevo de microscopio que utiliza un tazón con luces LED de varios colores y esquemas de iluminación producidos por el aprendizaje automático (Fotografía cortesía de la Universidad de Duke)
Imagen: Se ha desarrollado un tipo nuevo de microscopio que utiliza un tazón con luces LED de varios colores y esquemas de iluminación producidos por el aprendizaje automático (Fotografía cortesía de la Universidad de Duke)
A pesar de la automatización generalizada habilitada por el nuevo software de posprocesamiento, el diseño físico del microscopio estándar aun ha cambiado relativamente poco, ya que, en su mayor parte, todavía es un instrumento optimizado para que un espectador humano pueda mirar e inspeccionar lo que se coloca debajo.

Se ha desarrollado un microscopio que adapta sus ángulos de iluminación, colores y patrones a la vez que se enseña la configuración óptima necesaria para completar una tarea de diagnóstico determinada. En lugar de difundir luz blanca desde abajo para iluminar uniformemente la lámina, los ingenieros desarrollaron una fuente de luz en forma de tazón con LED integrados en toda su superficie. Esto permite que las muestras se iluminen desde diferentes ángulos hasta casi 90 grados con diferentes colores, lo que esencialmente proyecta sombras y resalta diferentes características de la muestra dependiendo del patrón de los LED utilizados.

Un equipo internacional de bioingenieros que trabaja con la Universidad de Duke (Durham NC, EUA) alimentó al microscopio con cientos de muestras de glóbulos rojos infectados con malaria, preparados como frotis delgados, en los que los cuerpos celulares permanecen enteros y se extienden idealmente en una sola capa en un portaobjetos de microscopio. Usando un tipo de algoritmo de aprendizaje automático llamado red neuronal convolucional, el microscopio aprendió qué características de la muestra eran más importantes para diagnosticar la malaria y la mejor manera de resaltarlas.

El algoritmo finalmente logró un patrón LED en forma de anillo de diferentes colores provenientes de ángulos relativamente altos. Si bien las imágenes resultantes son más ruidosas que una imagen de microscopio normal, resaltan el parásito de la malaria en un punto brillante y se clasifican correctamente aproximadamente el 90% de las veces. Los médicos capacitados y otros algoritmos de aprendizaje automático generalmente funcionan con una precisión de aproximadamente el 75%. El equipo también demostró que el microscopio funciona bien con preparaciones espesas de frotis de sangre, en las que los glóbulos rojos forman un fondo altamente no uniforme y se pueden romper. Para esta preparación, el algoritmo de aprendizaje automático tuvo éxito el 99% de las veces.

Roarke Horstmeyer, PhD, profesor asistente de ingeniería biomédica y autor principal del estudio, dijo: “Un microscopio estándar ilumina una muestra con la misma cantidad de luz proveniente de todas las direcciones, y esa iluminación se ha optimizado para los ojos humanos en cientos de años. Pero las computadoras pueden ver cosas que los humanos no pueden. Por lo tanto, no solo hemos rediseñado el hardware para proporcionar una amplia gama de opciones de iluminación, sino que hemos permitido que el microscopio optimice la iluminación por sí mismo”. El estudio fue publicado en la edición de noviembre de 2019 de la revista Biomedical Optics Express.

Enlace relacionado:
Universidad de Duke

New
Miembro Oro
Ketosis and DKA Test
D-3-Hydroxybutyrate (Ranbut) Assay
KIT DE PRUEBA POC PARA H.PYLORI
Hepy Urease Test
Automated Chemiluminescence Immunoassay Analyzer
MS-i3080
Miembro Oro
SISTEMA DE RECOLECCIÓN Y TRANSPORTE
PurSafe Plus®

Canales

Química Clínica

ver canal
Imagen: Las coautoras Nina Zhao, Ph.D., y Kine Eide Kvitne, Ph.D., analizan muestras biológicas para detectar la exposición a medicamentos (fotografía cortesía de UC San Diego Health Sciences)

Herramienta en línea detecta exposición a medicamentos directamente en muestras de pacientes

Los médicos suelen basarse en entrevistas con pacientes y sus historiales médicos para determinar qué medicamentos ha tomado una persona, pero esta información suele ser incompleta. Las personas pueden... Más

Hematología

ver canal
Imagen: las células leucémicas residuales pueden predecir la supervivencia a largo plazo en la leucemia mieloide aguda (fotografía cortesía de Shutterstock)

Pruebas de MRD podrían predecir supervivencia en pacientes con leucemia

La leucemia mieloide aguda es un cáncer sanguíneo agresivo que altera la producción normal de células sanguíneas y suele recaer incluso después de un tratamiento intensivo. Actualmente, los médicos carecen... Más

Inmunología

ver canal
Imagen: el análisis de sangre ADNlc no invasivo puede identificar eventos adversos de la terapia de puntos de control inmunitario en pacientes con cáncer (Fotografía cortesía de Elizabeth Cook)

Análisis sanguíneo podría detectar efectos adversos de inmunoterapia

Los inhibidores de puntos de control inmunitario han transformado el tratamiento del cáncer, pero también pueden desencadenar graves efectos adversos inmunitarios que dañan órganos... Más

Patología

ver canal
Imagen: determinación de EG añadido a jarabes medicinales: se muestran imágenes ampliadas de las almohadillas en las tiras. Los cuadros rojos muestran dónde se puede ver el color azul en la almohadilla cuando se observa visualmente (Arman, B.Y., Legge, I., Walsby-Tickle, J. et al. https://doi.org/10.1038/s41598-025-26670-1)

Pruebas rápidas y económicas pueden prevenir muertes infantiles por jarabes medicinales contaminados

Jarabes medicinales contaminados con sustancias químicas tóxicas han causado la muerte de cientos de niños en todo el mundo, lo que revela una grave deficiencia en el análisis... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.