Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
Werfen

Deascargar La Aplicación Móvil




Modelo de análisis de lengua basado en IA demuestra un 98 % de precisión en la detección de enfermedades

Por el equipo editorial de LabMedica en español
Actualizado el 20 Aug 2024
Imagen: Un investigador demuestra cómo una cámara captura imágenes de la lengua y las analiza para detectar enfermedades (foto cortesía de MTU)
Imagen: Un investigador demuestra cómo una cámara captura imágenes de la lengua y las analiza para detectar enfermedades (foto cortesía de MTU)

El color de la lengua es un indicador de salud fundamental que se utiliza para identificar enfermedades y medir su progresión. Varias características de la lengua, como su color, forma y recubrimiento, pueden señalar diferentes condiciones de salud. Por ejemplo, una lengua amarilla suele indicar diabetes, mientras que una lengua morada con una capa gruesa podría sugerir cáncer. Los pacientes con accidentes cerebrovasculares agudos suelen tener lenguas rojas y de forma inusual. Una lengua blanca podría significar anemia; una lengua de color rojo intenso se ve con frecuencia en casos graves de COVID-19; y las lenguas índigo o violeta pueden indicar problemas vasculares, gastrointestinales o asma. Aprovechando este concepto, la inteligencia artificial (IA) está modernizando una práctica de 2000 años de antigüedad de la medicina tradicional china que implica el diagnóstico de afecciones de salud mediante el examen de la lengua.

Investigadores de la Universidad Técnica Media (MTU, Bagdad, Irak) y la Universidad del Sur de Australia (UniSA, Adelaida, Australia) realizaron experimentos utilizando IA para analizar el color de la lengua con el fin de diagnosticar enfermedades. Entrenaron algoritmos de aprendizaje automático utilizando 5260 imágenes y recopilaron 60 imágenes de lengua adicionales e pacientes con diversas condiciones de salud en dos hospitales universitarios en el Medio Oriente. Su sistema de imágenes propuesto en un nuevo artículo publicado en la revista Technologies analiza el color de la lengua para ofrecer información diagnóstica inmediata, lo que demuestra el potencial de la IA para hacer avanzar significativamente la práctica médica.

En su estudio, las cámaras ubicadas a 20 centímetros de los sujetos capturaron imágenes de sus lenguas, y el sistema de IA evaluó las condiciones de salud en tiempo real. El modelo de IA correlacionó con éxito los colores de la lengua con enfermedades específicas en casi todos los casos, logrando una tasa de precisión del 98 % en el diagnóstico de una variedad de afecciones, incluidas diabetes, accidente cerebrovascular, anemia, asma, enfermedades del hígado y la vesícula biliar, COVID-19 y varios problemas vasculares y gastrointestinales mediante el análisis del color de la lengua. Los investigadores anticipan que en el futuro, los teléfonos inteligentes podrían emplearse para realizar diagnósticos similares, mejorando la accesibilidad y la conveniencia en los diagnósticos médicos.

“Estos resultados confirman que el análisis computarizado de la lengua es un método seguro, eficiente, fácil de usar y asequible para la detección de enfermedades que respalda los métodos modernos con una práctica centenaria”, dijo el coautor de UniSA, el profesor Javaan Chahl.

Enlaces relacionados:
MTU
UniSA

Miembro Oro
SISTEMA DE RECOLECCIÓN Y TRANSPORTE
PurSafe Plus®
Miembro Oro
Automated MALDI-TOF MS System
EXS 3000
Miembro Oro
ENSAYO INMUNOCROMATOGRÁFICO
CRYPTO Cassette
Laboratory Software
ArtelWare

Canales

Diagnóstico Molecular

ver canal
Imagen: el pequeño dispositivo con chip separa las células cancerosas del torrente sanguíneo para tratar el cáncer de páncreas (fotografía cortesía de Sana Sheybanikashani/UIC)

Dispositivo microfluídico predice recurrencia del cáncer de páncreas tras cirugía

El adenocarcinoma ductal pancreático es uno de los cánceres más mortales, difícil de detectar precozmente y propenso a reaparecer en casi el 70 % de los pacientes tras el tratamiento.... Más

Hematología

ver canal
Imagen: una investigación ha relacionado la agregación plaquetaria en muestras de sangre de la mediana edad con los marcadores cerebrales tempranos de la enfermedad de Alzheimer (fotografía cortesía de Shutterstock)

Análisis sanguíneo de actividad plaquetaria en mediana edad podría identificar riesgo temprano de Alzheimer

La detección temprana de la enfermedad de Alzheimer sigue siendo una de las mayores necesidades insatisfechas en neurología, sobre todo porque los cambios biológicos que subyacen al... Más

Microbiología

ver canal
Imagen: desarrollo de terapias y diagnósticos dirigidos para la tuberculosis extrapulmonar en el Hospital Universitario de Colonia (fotografía cortesía de Michael Wodak/Uniklinik Köln)

Firmas moleculares basadas en sangre para permitir un diagnóstico rápido de TBEP

La tuberculosis extrapulmonar (TBEP) sigue siendo difícil de diagnosticar y tratar debido a su propagación más allá de los pulmones y la falta de biomarcadores fácilmente accesibles. A pesar de que la... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.