Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros

Deascargar La Aplicación Móvil




Algoritmo de IA predice enfermedad renal diabética a través de análisis de sangre

Por el equipo editorial de LabMedica en español
Actualizado el 02 Jun 2023
Imagen: El nuevo algoritmo puede predecir la enfermedad renal diabética (Fotografía cortesía de Freepix)
Imagen: El nuevo algoritmo puede predecir la enfermedad renal diabética (Fotografía cortesía de Freepix)

La diabetes es reconocida mundialmente como el principal contribuyente a la insuficiencia renal. Se han logrado avances importantes en el diseño de tratamientos para la enfermedad renal en pacientes diabéticos. Sin embargo, evaluar el riesgo de enfermedad renal de una persona basándose únicamente en factores clínicos puede ser un desafío. En consecuencia, identificar quién es más susceptible de desarrollar enfermedad renal diabética es una necesidad clínica vital. Ahora, los científicos han creado un método computacional que predice la probabilidad de que una persona con diabetes tipo 2 desarrolle enfermedad renal, una complicación frecuente pero grave de la diabetes. Esto podría ayudar a los médicos a prevenir o mejorar el manejo de la enfermedad renal en pacientes con diabetes tipo 2.

El nuevo algoritmo desarrollado por investigadores de Sanford Burnham Prebys (La Jolla, CA, EUA) y la Universidad China de Hong Kong (CUHK, Hong Kong) se basa en medir un proceso conocido como metilación del ADN, que es la acumulación de cambios sutiles en el ADN. La metilación del ADN puede proporcionar información esencial sobre la activación y desactivación de genes y se puede medir fácilmente mediante un análisis de sangre.

Utilizando datos completos de más de 1.200 pacientes con diabetes tipo 2 registrados en el Registro de Diabetes de Hong Kong, los investigadores construyeron su modelo que también probaron en un grupo independiente de 326 americanos nativos con diabetes tipo 2. Esto confirmó el poder predictivo del modelo para la enfermedad renal en diversas poblaciones. Actualmente, los investigadores están perfeccionando su modelo y ampliando su aplicación para abordar otras cuestiones relacionadas con la salud y la enfermedad, como por qué algunos pacientes con cáncer no responden favorablemente a ciertos tratamientos.

“Este estudio brinda una visión del poderoso futuro del diagnóstico predictivo”, dijo el coautor principal Kevin Yip, Ph.D., profesor y director de Bioinformática en Sanford Burnham Prebys. “Nuestro equipo ha demostrado que al combinar datos clínicos con tecnología de punta, es posible desarrollar modelos computacionales para ayudar a los médicos a optimizar el tratamiento de la diabetes tipo 2 para prevenir la enfermedad renal”.

"Nuestro modelo computacional puede usar marcadores de metilación de una muestra de sangre para predecir tanto la función renal actual como la función renal en el futuro, lo que significa que podría implementarse fácilmente junto con los métodos actuales para evaluar el riesgo de enfermedad renal de un paciente", añadió Yip.

Enlaces relacionados:
Sanford Burnham Prebys
CUHK

New
Miembro Oro
Genetic Type 1 Diabetes Risk Test
T1D GRS Array
KIT DE PRUEBA POC PARA H.PYLORI
Hepy Urease Test
HBV DNA Test
GENERIC HBV VIRAL LOAD VER 2.0
Hemodynamic System Monitor
OptoMonitor

Canales

Inmunología

ver canal
Imagen: las células tumorales circulantes aisladas de muestras de sangre podrían ayudar a guiar las decisiones sobre inmunoterapia (fotografía cortesía de Shutterstock)

Análisis de sangre identifica pacientes con cáncer pulmonar beneficiarios de fármaco de inmunoterapia

El cáncer de pulmón de células pequeñas (CPCP) es una enfermedad agresiva con opciones de tratamiento limitadas, e incluso las inmunoterapias recientemente aprobadas no benefician... Más

Microbiología

ver canal
Imagen: la plataforma de diagnóstico de precisión dSHERLOCK permite la evaluación cuantitativa de infecciones por hongos en 20 minutos (fotografía cortesía del Instituto Wyss de la Universidad de Harvard)

Plataforma de IA permite detección rápida de patógenos de C. auris resistentes a fármacos

Las infecciones causadas por la levadura patógena Candida auris representan una amenaza significativa para los pacientes hospitalizados, en particular para aquellos con sistemas inmunitarios debilitados... Más

Industria

ver canal
Imagen: la plataforma molecular de punto de atención LIAISON NES (fotografía cortesía de Diasorin)

Diasorin y Fisher Scientific firman acuerdo de distribución en EUA para plataforma POC molecular

Diasorin (Saluggia, Italia) ha firmado un acuerdo de distribución exclusivo con Fisher Scientific, parte de Thermo Fisher Scientific (Waltham, MA, EUA), para la plataforma molecular de punto de... Más
Copyright © 2000-2026 Globetech Media. All rights reserved.