Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Please note that the LabMedica website is also available in a complete English version
Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
LGC Clinical Diagnostics

Deascargar La Aplicación Móvil




IA predice con precisión resultados del cáncer a partir de muestras de tejido

Por el equipo editorial de LabMedica en español
Actualizado el 10 Jan 2024
Print article
Imagen: El modelo de IA analiza la organización espacial celular para hacer diagnósticos y pronósticos del paciente (Fotografía cortesía de UT Southwestern)
Imagen: El modelo de IA analiza la organización espacial celular para hacer diagnósticos y pronósticos del paciente (Fotografía cortesía de UT Southwestern)

Los patólogos suelen examinar las muestras de tejido de los pacientes en portaobjetos, un proceso integral para el diagnóstico. Este método tradicional, aunque eficaz, requiere mucho tiempo y está sujeto a variabilidad en las interpretaciones entre diferentes patólogos. Además, algunos detalles sutiles en las imágenes de patología podrían escapar a la observación humana, pero podrían contener información crítica sobre el estado de salud de un paciente. En los últimos años, se han desarrollado varios modelos de inteligencia artificial (IA) para realizar determinadas tareas usualmente realizadas por los patólogos, como clasificar tipos de células o medir las interacciones celulares en función de la proximidad. Sin embargo, estos modelos no han capturado completamente los aspectos más complejos del análisis de imágenes de tejidos que realizan los patólogos, incluido el reconocimiento de disposiciones espaciales celulares complejas y el filtrado de "ruidos" de imágenes irrelevantes que podrían distorsionar las interpretaciones. Para abordar esta brecha, los investigadores han introducido un modelo innovador de IA que es capaz de examinar la organización espacial de las células dentro de muestras de tejido, ofreciendo predicciones precisas sobre los resultados de los pacientes con cáncer y nuevas perspectivas para el pronóstico del cáncer asistido por IA y planes de tratamiento personalizados.

Esta herramienta de inteligencia artificial, denominada Ceograph, creada por investigadores del UT Southwestern Medical Center (Dallas, TX, EUA), imita el enfoque adoptado por los patólogos para examinar portaobjetos de tejido. Comienza identificando las células y sus respectivas posiciones dentro de la imagen. Luego clasifica los tipos de células y delinea sus formas y distribuciones espaciales, creando un mapa completo donde se detallan para su análisis la disposición, dispersión e interacciones entre las células. El equipo validó Ceograph en tres escenarios clínicos utilizando portaobjetos de patología. En un caso, Ceograph distinguió entre dos tipos de cáncer de pulmón: adenocarcinoma y carcinoma de células escamosas. En otro, midió el riesgo de progresión de afecciones orales potencialmente cancerosas a malignidad. Finalmente, identificó a los pacientes con cáncer de pulmón con mayor probabilidad de beneficiarse de los inhibidores del receptor del factor de crecimiento epidérmico.

En cada escenario, el desempeño de Ceograph en la predicción de los resultados de los pacientes superó a los métodos tradicionales. En particular, los conocimientos sobre la organización espacial celular proporcionados por Ceograph no solo son interpretables sino que también arrojan luz sobre las implicaciones biológicas de las distintas interacciones espaciales entre células individuales. Estos avances resaltan el papel cada vez más vital que puede desempeñar la IA en la atención médica, particularmente en la mejora de la precisión y eficiencia de los análisis patológicos. Esta tecnología promete perfeccionar las estrategias preventivas para personas con alto riesgo y adaptar las opciones de tratamiento para satisfacer las necesidades únicas de cada paciente.

"La organización espacial celular es como un complejo rompecabezas en el que cada célula sirve como una pieza única, que encaja meticulosamente para formar un tejido cohesionado o una estructura de órgano", dijo el líder del estudio, Guanghua Xiao, Ph.D. "Esta investigación muestra la notable capacidad de la IA para captar estas intrincadas relaciones espaciales entre las células dentro de los tejidos, extrayendo información sutil que antes estaba más allá de la comprensión humana al tiempo que predice los resultados de los pacientes".

Enlaces relacionados:
UT Southwestern Medical Center  

New
Miembro Oro
Blood Gas Analyzer
GEM Premier 7000 with iQM3
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
New
Platform Shaker
CRP-3X CAPPRondo
New
IGFBP-1 Rapid Test
AMNISTRIP

Print article

Canales

Química Clínica

ver canal
Imagen: La nueva prueba basada en saliva para insuficiencia cardíaca mide dos biomarcadores en aproximadamente 15 minutos (foto cortesía de Trey Pittman)

Dispositivo de pruebas de saliva predice la insuficiencia cardíaca en 15 minutos

La insuficiencia cardíaca es una enfermedad grave en la que el músculo cardíaco no puede bombear suficiente sangre rica en oxígeno a todo el cuerpo. Se considera una de las... Más

Diagnóstico Molecular

ver canal
Imagen: El ensayo de sífilis VITROS ha recibido la autorización 510(k) de la FDA (foto cortesía de QuidelOrtho)

Ensayo de sífilis mejora la eficiencia del laboratorio y reduce costos mediante la detección temprana

La prevalencia de la sífilis y otras infecciones de transmisión sexual (ITS) en los Estados Unidos ha experimentado un aumento notable, con más de 176.000 nuevos casos de sífilis... Más

Hematología

ver canal
Imagen: El nuevo sistema de puntuación predice la hiperreactividad plaquetaria y el riesgo relacionado de eventos cardiovasculares (foto cortesía de Shutterstock)

Puntuación de plaquetas sanguíneas detecta el riesgo de ataque cardíaco y accidente cerebrovascular

Las plaquetas, que son fragmentos de células que circulan en la sangre, desempeñan un papel fundamental en la formación de coágulos para detener el sangrado. Sin embargo, en... Más

Inmunología

ver canal
Imagen: La prueba de sangre mide los linfocitos para orientar el uso de la inmunoterapia contra el mieloma múltiple (cortesía de 123RF)

Una prueba de sangre simple identifica a pacientes con mieloma múltiple que podrían beneficiarse de la inmunoterapia CAR-T

El mieloma múltiple es un tipo de cáncer de sangre que se origina en las células plasmáticas de la médula ósea. Casi todos los pacientes con mieloma múltiple... Más

Microbiología

ver canal
Imagen: El sistema Accelerate WAVE proporciona AST rápidamente directamente de cultivos de sangre positivos (foto cortesía de Accelerate Diagnostics)

Sistema de diagnóstico ofrece resultados rápidos de pruebas de susceptibilidad a antibióticos

La Organización Mundial de la Salud estima que la sepsis afecta a alrededor de 49 millones de personas en todo el mundo cada año, lo que resulta en aproximadamente 11 millones de muertes,... Más

Tecnología

ver canal
Imagen: Selim Tanriverdi, un estudiante de doctorado en KTH, muestra un microchip que podría ayudar a reducir el tiempo de proceso para el análisis de sangre (Foto cortesía de David Callahan)

Nuevo método de microfluidos podría acelerar los análisis de sangre

Los investigadores han desarrollado un nuevo método para acelerar y potencialmente ampliar el proceso de separación de partículas en fluidos, una técnica que podría ser... Más

Industria

ver canal
Imagen: Se espera que el mercado global de pruebas de coagulación alcance los USD 6.5 mil millones para 2034 (foto cortesía de 123RF)

Mercado global de pruebas de coagulación impulsado por el aumento de trastornos sanguíneos e intervenciones quirúrgicas

A medida que la población mundial envejece, aumenta la demanda de pruebas de coagulación, en particular entre los ancianos, que enfrentan un mayor riesgo de eventos trombóticos y trastornos... Más
Copyright © 2000-2024 Globetech Media. All rights reserved.