Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros

Deascargar La Aplicación Móvil




IA identifica riesgos de cada sexo asociados con tumores cerebrales

Por el equipo editorial de LabMedica en español
Actualizado el 11 Oct 2024
Las imágenes muestran regiones de tumores de glioblastoma en mujeres (arriba) y hombres (abajo). Los modelos de IA predicen la presencia de áreas de riesgo relativamente más alto (rojo) y de menor riesgo (azul) (Foto cortesía de Tiwari Lab/UW -Madison)
Las imágenes muestran regiones de tumores de glioblastoma en mujeres (arriba) y hombres (abajo). Los modelos de IA predicen la presencia de áreas de riesgo relativamente más alto (rojo) y de menor riesgo (azul) (Foto cortesía de Tiwari Lab/UW -Madison)

Durante años, los investigadores del cáncer han observado que los hombres tienen más probabilidades que las mujeres de desarrollar glioblastoma, una forma mortal y agresiva de cáncer cerebral con una supervivencia media de solo 15 meses después del diagnóstico. Además, estos tumores tienden a ser más agresivos en los hombres. Sin embargo, identificar características específicas que podrían ayudar a predecir qué tumores crecerán más rápido ha seguido siendo un desafío. Ahora, los investigadores están recurriendo a la inteligencia artificial (IA) para descubrir estos factores de riesgo y explorar cómo difieren entre hombres y mujeres.

Los científicos de la Universidad de Wisconsin-Madison (Madison, Wisconsin, EUA) están utilizando las capacidades computacionales de la IA para analizar grandes conjuntos de datos de imágenes médicas, con el objetivo de encontrar patrones que puedan ayudar a los oncólogos a tomar decisiones más informadas para sus pacientes. Su objetivo es abordar toda la gama de desafíos que enfrentan los pacientes con cáncer, desde el diagnóstico y el pronóstico hasta la evaluación de la respuesta al tratamiento. En este estudio, los investigadores se centraron en imágenes digitales de portaobjetos de patología (secciones delgadas de muestras de tumores) en un esfuerzo por detectar patrones que pudieran predecir la velocidad a la que podría crecer un tumor y, en consecuencia, cuánto tiempo podría sobrevivir un paciente. El pronóstico preciso es fundamental, ya que influye en las decisiones de tratamiento y afecta la calidad de vida de los pacientes después del diagnóstico.

Para abordar este problema, los investigadores desarrollaron un modelo de IA capaz de detectar patrones sutiles en las muestras de patología que podrían ser imperceptibles para el ojo humano. Entrenaron el modelo utilizando datos de más de 250 estudios de glioblastoma, enseñándole a reconocer características tumorales distintivas, como la abundancia de ciertos tipos de células y el grado de invasión del tumor en el tejido sano cercano. Además, el modelo fue entrenado para identificar correlaciones entre estas características y los tiempos de supervivencia de los pacientes, teniendo en cuenta también su sexo. A través de este enfoque, el equipo creó un modelo de IA que puede identificar factores de riesgo para tumores más agresivos, con patrones distintos asociados con cada sexo.

En el caso de las mujeres, las características de mayor riesgo identificadas por el modelo de IA incluían tumores que se infiltraban en el tejido sano. En los hombres, la presencia de células pseudoempalizadas (células que rodean el tejido moribundo) se relacionaba con tumores más agresivos. Los hallazgos iniciales de los investigadores, publicados en Science Advances, revelaron que el modelo también detectó rasgos tumorales asociados con peores pronósticos para ambos sexos. El equipo ahora está ampliando su trabajo a los datos de resonancia magnética y ha comenzado a utilizar la IA para analizar otros tipos de cáncer, como el de páncreas y el de mama, con el objetivo de mejorar los resultados de los pacientes. Este estudio podría allanar el camino para enfoques de tratamiento más personalizados para los pacientes con glioblastoma.

“Se recopilan toneladas de datos durante el tratamiento de un paciente con cáncer”, afirmó Pallavi Tiwari, profesora de radiología e ingeniería biomédica. “Por desgracia, en la actualidad, se suele estudiar de forma aislada, y aquí es donde la IA tiene un enorme potencial. Al descubrir estos patrones únicos, esperamos inspirar nuevas vías para el tratamiento personalizado y alentar la investigación continua sobre las diferencias biológicas subyacentes observadas en estos tumores”.

Miembro Oro
Quality Control Material
iPLEX Pro Exome QC Panel
KIT DE PRUEBA POC PARA H.PYLORI
Hepy Urease Test
Automated MALDI-TOF MS System
EXS 3000
Sperm Quality Analyis Kit
QwikCheck Beads Precision and Linearity Kit

Canales

Diagnóstico Molecular

ver canal
Imagen: el dispositivo de diagnóstico puede indicar cómo responden los tumores cerebrales mortales al tratamiento con un simple análisis de sangre (fotografía cortesía de UQ)

Dispositivo de diagnóstico predice respuesta al tratamiento de tumores cerebrales mediante análisis sanguíneo

El glioblastoma es uno de los tipos más mortales de cáncer cerebral, en gran parte porque los médicos no cuentan con un método fiable para determinar la eficacia de los tratamientos... Más

Inmunología

ver canal
Imagen: las células tumorales circulantes aisladas de muestras de sangre podrían ayudar a guiar las decisiones sobre inmunoterapia (fotografía cortesía de Shutterstock)

Análisis de sangre identifica pacientes con cáncer pulmonar beneficiarios de fármaco de inmunoterapia

El cáncer de pulmón de células pequeñas (CPCP) es una enfermedad agresiva con opciones de tratamiento limitadas, e incluso las inmunoterapias recientemente aprobadas no benefician... Más

Microbiología

ver canal
Imagen: nueva evidencia sugiere que los desequilibrios en el microbioma intestinal pueden contribuir a la aparición y progresión del deterioro cognitivo leve y la enfermedad de Alzheimer (fotografía cortesía de Adobe Stock)

Nuevo estudio identifica características del microbioma intestinal asociadas con enfermedad de Alzheimer

La enfermedad de Alzheimer afecta a aproximadamente 6,7 millones de personas en Estados Unidos y a casi 50 millones en todo el mundo; sin embargo, el deterioro cognitivo temprano sigue siendo difícil de... Más
Copyright © 2000-2026 Globetech Media. All rights reserved.