Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
Werfen

Deascargar La Aplicación Móvil




Diagnostican la leucemia mieloide aguda mediante redes neurales convolucionales

Por el equipo editorial de LabMedica en español
Actualizado el 05 Dec 2019
Todos los días, se evalúan millones de células sanguíneas individuales para el diagnóstico de enfermedades en los laboratorios médicos y clínicas. Más...
La mayor parte de esta tarea repetitiva la siguen realizando manualmente los citólogos capacitados, que inspeccionan las células en frotis de sangre coloreados y las clasifican en aproximadamente 15 categorías diferentes.

Los científicos ahora han demostrado que los algoritmos de aprendizaje profundo funcionan de manera similar a los expertos humanos, al clasificar muestras de sangre de pacientes que sufren de leucemia mieloide aguda (LMA). Su estudio, de prueba de concepto, allana el camino para un análisis de muestras automatizado, estandarizado y disponible en el futuro cercano.

Los científicos del Helmholtz Zentrum München (Neuherberg, Alemania) y sus colegas compilaron un conjunto de datos de imágenes anotadas de más de 18.000 glóbulos blancos, lo utilizaron para entrenar una red neuronal convolucional para la clasificación de leucocitos y evaluaron el rendimiento de la red comparando la variabilidad inter e intra expertos. Utilizaron imágenes que se extrajeron de frotis de sangre de 100 pacientes que padecían la enfermedad sanguínea agresiva, LMA y 100 controles. El nuevo método basado en la inteligencia artificial se evaluó comparando su rendimiento con la exactitud de los expertos humanos.

La red clasifica los tipos de células más importantes con gran exactitud. También permitió a los investigadores decidir dos preguntas clínicamente relevantes con rendimiento a nivel humano: (1) si una célula dada tiene carácter de blasto y (2) si pertenece a los tipos de células normalmente presentes en los frotis de sangre no patológicos. El resultado demostró que la solución impulsada por IA fue capaz de identificar células blásticas de diagnóstico, al menos tan bien como un experto en citología capacitado.

Carsten Marr, PhD, bióloga computacional de células madre y autora principal del estudio, dijo: “Para llevar nuestro enfoque a las clínicas, se debe convertir la digitalización de las muestras de sangre de los pacientes en un proceso de rutina. Los algoritmos tienen que ser entrenados con muestras de diferentes fuentes para hacer frente a la heterogeneidad inherente en la preparación y coloración de las muestras. Junto con nuestros socios, podríamos demostrar que los algoritmos de aprendizaje profundo muestran un desempeño similar al de los citólogos humanos. En el próximo paso, evaluaremos qué tan bien se pueden predecir otras características de la enfermedad, como mutaciones genéticas o translocaciones, con este nuevo método impulsado por la IA”.

Los autores concluyeron que su método tiene el potencial de ser utilizado como una ayuda de clasificación para examinar un número mucho mayor de células en un frotis, de lo que generalmente puede hacer un experto humano. Esto permitirá a los médicos reconocer poblaciones de células malignas con menor prevalencia en una etapa más temprana de la enfermedad. El estudio fue publicado el 12 de noviembre de 2019 en la revista Nature Machine Intelligence.

Enlace relacionado:
Helmholtz Zentrum München


Miembro Oro
PIPETA HÍBRIDA
SWITCH
KIT DE PRUEBA POC PARA H.PYLORI
Hepy Urease Test
Sample Transportation System
Tempus1800 Necto
Capillary Blood Collection Tube
IMPROMINI M3
Lea el artículo completo al registrarse hoy mismo, es GRATIS! ¡Es GRATUITO!
Regístrese GRATIS a LabMedica.es y acceda a las noticias y eventos que afectan al mundo del Laboratorio.
  • Edición gratuita de la versión digital de Lab Medica en Español enviado regularmente por email
  • Revista impresa gratuita de la revista Lab Medica en Español (disponible únicamente fuera de EUA y Canadá).
  • Acceso gratuito e ilimitado a ediciones anteriores de Lab Medica en Español digital
  • Boletín de Lab Medica en Español gratuito cada dos semanas con las últimas noticias
  • Noticias de último momento enviadas por email
  • Acceso gratuito al calendario de eventos
  • Acceso gratuito a los servicios de nuevos productos de LinkXpress
  • Registrarse es sencillo y GRATUITO!
Haga clic aquí para registrarse








Canales

Diagnóstico Molecular

ver canal
Imagen: las células recién descubiertas explican por qué algunos niños con leucemia linfoblástica aguda no responden bien al tratamiento (fotografía cortesía de Shutterstock)

Marcador genético evita quimioterapia innecesaria a niños con leucemia de células T

En el Reino Unido, aproximadamente 400 niños son diagnosticados con leucemia linfoblástica aguda (LLA) cada año, y aproximadamente el 15 % presenta un subtipo de LLA-T más agresivo. Si bien el enfoque... Más

Inmunología

ver canal
Imagen: el dispositivo de doble canal impreso en 3D separa firmas de proteínas y ARN para identificar de manera confiable la infección activa por VIH-1 (fotografía cortesía de Dipanjan Pan/Penn State)

Nueva prueba distingue falsos positivos inducidos por vacuna de infección activa por VIH

Desde que se identificó el VIH en 1983, más de 91 millones de personas han contraído el virus y más de 44 millones han fallecido por causas relacionadas. Hoy en día, casi 40 millones de personas en todo... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.