Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
Werfen

Deascargar La Aplicación Móvil




Diagnostican la leucemia mieloide aguda mediante redes neurales convolucionales

Por el equipo editorial de LabMedica en español
Actualizado el 05 Dec 2019
Imagen: Diagrama esquemático de cómo el algoritmo de aprendizaje profundo clasifica los leucocitos en un frotis de sangre de manera automatizada y estandarizada (Fotografía cortesía del Helmholtz Zentrum München/Dr. Carsten Marr)
Imagen: Diagrama esquemático de cómo el algoritmo de aprendizaje profundo clasifica los leucocitos en un frotis de sangre de manera automatizada y estandarizada (Fotografía cortesía del Helmholtz Zentrum München/Dr. Carsten Marr)
Todos los días, se evalúan millones de células sanguíneas individuales para el diagnóstico de enfermedades en los laboratorios médicos y clínicas. La mayor parte de esta tarea repetitiva la siguen realizando manualmente los citólogos capacitados, que inspeccionan las células en frotis de sangre coloreados y las clasifican en aproximadamente 15 categorías diferentes.

Los científicos ahora han demostrado que los algoritmos de aprendizaje profundo funcionan de manera similar a los expertos humanos, al clasificar muestras de sangre de pacientes que sufren de leucemia mieloide aguda (LMA). Su estudio, de prueba de concepto, allana el camino para un análisis de muestras automatizado, estandarizado y disponible en el futuro cercano.

Los científicos del Helmholtz Zentrum München (Neuherberg, Alemania) y sus colegas compilaron un conjunto de datos de imágenes anotadas de más de 18.000 glóbulos blancos, lo utilizaron para entrenar una red neuronal convolucional para la clasificación de leucocitos y evaluaron el rendimiento de la red comparando la variabilidad inter e intra expertos. Utilizaron imágenes que se extrajeron de frotis de sangre de 100 pacientes que padecían la enfermedad sanguínea agresiva, LMA y 100 controles. El nuevo método basado en la inteligencia artificial se evaluó comparando su rendimiento con la exactitud de los expertos humanos.

La red clasifica los tipos de células más importantes con gran exactitud. También permitió a los investigadores decidir dos preguntas clínicamente relevantes con rendimiento a nivel humano: (1) si una célula dada tiene carácter de blasto y (2) si pertenece a los tipos de células normalmente presentes en los frotis de sangre no patológicos. El resultado demostró que la solución impulsada por IA fue capaz de identificar células blásticas de diagnóstico, al menos tan bien como un experto en citología capacitado.

Carsten Marr, PhD, bióloga computacional de células madre y autora principal del estudio, dijo: “Para llevar nuestro enfoque a las clínicas, se debe convertir la digitalización de las muestras de sangre de los pacientes en un proceso de rutina. Los algoritmos tienen que ser entrenados con muestras de diferentes fuentes para hacer frente a la heterogeneidad inherente en la preparación y coloración de las muestras. Junto con nuestros socios, podríamos demostrar que los algoritmos de aprendizaje profundo muestran un desempeño similar al de los citólogos humanos. En el próximo paso, evaluaremos qué tan bien se pueden predecir otras características de la enfermedad, como mutaciones genéticas o translocaciones, con este nuevo método impulsado por la IA”.

Los autores concluyeron que su método tiene el potencial de ser utilizado como una ayuda de clasificación para examinar un número mucho mayor de células en un frotis, de lo que generalmente puede hacer un experto humano. Esto permitirá a los médicos reconocer poblaciones de células malignas con menor prevalencia en una etapa más temprana de la enfermedad. El estudio fue publicado el 12 de noviembre de 2019 en la revista Nature Machine Intelligence.

Enlace relacionado:
Helmholtz Zentrum München

Miembro Oro
Hematology Analyzer
Medonic M32B
KIT DE PRUEBA POC PARA H.PYLORI
Hepy Urease Test
Laboratory Software
ArtelWare
Automated Chemiluminescence Immunoassay Analyzer
MS-i3080

Canales

Química Clínica

ver canal
Imagen: una técnica rápida de espectrometría de masas permite la detección de medicamentos casi en tiempo real en entornos de atención de emergencia (Boccuzzi, S. et al., Analyst 151, 741–748 (2026). DOI: 10.1039/D5AN01148E)

Método rápido de análisis sanguíneo permite decisiones más seguras en emergencias por medicamentos

La intoxicación aguda por drogas recreativas es un motivo frecuente de visitas a urgencias; sin embargo, los médicos rara vez tienen acceso a resultados toxicológicos confirmatorios... Más

Inmunología

ver canal
Imagen: las células tumorales circulantes aisladas de muestras de sangre podrían ayudar a guiar las decisiones sobre inmunoterapia (fotografía cortesía de Shutterstock)

Análisis de sangre identifica pacientes con cáncer pulmonar beneficiarios de fármaco de inmunoterapia

El cáncer de pulmón de células pequeñas (CPCP) es una enfermedad agresiva con opciones de tratamiento limitadas, e incluso las inmunoterapias recientemente aprobadas no benefician... Más

Microbiología

ver canal
Imagen: la tecnología basada en CRISPR elimina elementos resistentes a los antibióticos de poblaciones de bacterias (fotografía cortesía de Bier Lab/UC San Diego)

Tecnología con CRISPR neutraliza bacterias resistentes a antibióticos

La resistencia a los antibióticos se ha convertido en una crisis sanitaria mundial, con proyecciones que estiman más de 10 millones de muertes al año para 2050 a medida que las &q... Más
Copyright © 2000-2026 Globetech Media. All rights reserved.