Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
INTEGRA BIOSCIENCES AG

Deascargar La Aplicación Móvil





Modelo automatizado de IA basado en imágenes de TC predice la progresión de la enfermedad y la mortalidad en los pacientes con COVID-19

Por el equipo editorial de LabMedica en español
Actualizado el 04 May 2021
Los investigadores desarrollaron un modelo automatizado de predicción de supervivencia basado en imágenes, usando el aprendizaje profundo de imágenes de tomografía computarizada (TC) de tórax, para una evaluación clínica rápida y exacta de la progresión y la mortalidad de la COVID-19.

En una evaluación del modelo, denominado U-supervivencia, desarrollado por investigadores del Hospital Brigham and Women's (Boston, MA, EUA), los resultados indicaron que se puede utilizar para proporcionar predicciones pronósticas automatizadas y objetivas para el tratamiento de pacientes con COVID-19.

Las imágenes de tórax pueden ayudar a los médicos a decidir si admitir o dar de alta a los pacientes con síntomas leves de COVID-19, si admitir a pacientes con síntomas de COVID-19 de moderados a graves en una sala regular o en una unidad de cuidados intensivos (UCI), y proporcionar información sobre el manejo terapéutico de pacientes hospitalizados con síntomas de COVID-19 de moderados a graves. Más...
La TC es el método de imágenes de tórax más sensible para la COVID-19.

El modelo U-supervivencia integra la información de las imágenes extraídas por aprendizaje profundo (U-Net) directamente en un modelo de riesgos proporcionales de Cox con una penalización de red elástica (modelo de Cox de red elástica) para realizar la predicción de pronóstico de pacientes con COVID-19. Después de entrenar a U-Net para realizar la segmentación semántica de los patrones de tejido pulmonar de las imágenes de TC de tórax, los investigadores sometieron la sección de cuello de botella de U-Net a un modelo de Cox de red elástica que selecciona automáticamente un subconjunto escaso de características para construir un modelo óptimo de supervivencia para los datos de entrada. Su enfoque se inspiró en la radiómica en el sentido de que los investigadores utilizaron una penalización de red elástica para construir una firma radiómica profunda para el análisis de supervivencia a partir de una gran cantidad de características extraídas de las imágenes internamente por U-Net.

Los investigadores demostraron que el aprendizaje profundo de las imágenes de TC de tórax se puede utilizar como parte integral de un modelo automatizado de predicción de supervivencia basado en imágenes usando la metodología de análisis de supervivencia tradicional. Esto hizo posible obtener información de supervivencia completa que no estaba disponible con los modelos de predicción propuestos anteriormente. En su evaluación de 383 pacientes positivos para COVID-19 de dos hospitales, el modelo U-supervivencia superó significativamente las pruebas de laboratorio existentes y los predictores visuales y cuantitativos basados en imágenes en la predicción de la progresión de la enfermedad y la mortalidad de los pacientes con COVID-19. Los resultados indican que el modelo U-supervivencia se puede utilizar para proporcionar predicciones pronósticas automatizadas y objetivas para el tratamiento de los pacientes con COVID-19.

Enlace relacionado:
Hospital Brigham and Women's


New
Miembro Oro
Human Chorionic Gonadotropin Test
hCG Quantitative - R012
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Herpes Simplex Virus ELISA
HSV 2 IgG – ELISA
New
Alpha-Fetoprotein Reagent
AFP Reagent Kit
Lea el artículo completo al registrarse hoy mismo, es GRATIS! ¡Es GRATUITO!
Regístrese GRATIS a LabMedica.es y acceda a las noticias y eventos que afectan al mundo del Laboratorio.
  • Edición gratuita de la versión digital de Lab Medica en Español enviado regularmente por email
  • Revista impresa gratuita de la revista Lab Medica en Español (disponible únicamente fuera de EUA y Canadá).
  • Acceso gratuito e ilimitado a ediciones anteriores de Lab Medica en Español digital
  • Boletín de Lab Medica en Español gratuito cada dos semanas con las últimas noticias
  • Noticias de último momento enviadas por email
  • Acceso gratuito al calendario de eventos
  • Acceso gratuito a los servicios de nuevos productos de LinkXpress
  • Registrarse es sencillo y GRATUITO!
Haga clic aquí para registrarse








Canales

Diagnóstico Molecular

ver canal
Imagen: macrófagos infectados con Mycobacterium tuberculosis (foto cortesía del MIT)

Nueva etiqueta molecular desarrolla pruebas de tuberculosis más sencillas y rápidas

La tuberculosis (TB), la enfermedad infecciosa más mortal a nivel mundial, infecta a aproximadamente 10 millones de personas cada año y causa más de un millón de muertes al año.... Más

Inmunología

ver canal
Imagen: la prueba de células madre del cáncer puede elegir con precisión tratamientos más efectivos (fotografía cortesía de la Universidad de Cincinnati)

Prueba de células madre predice resultado del tratamiento en cáncer de ovario resistente al platino

El cáncer de ovario epitelial suele responder inicialmente a la quimioterapia, pero con el tiempo, el tumor desarrolla resistencia a la terapia, lo que provoca su recrecimiento. Esta resistencia... Más

Tecnología

ver canal
Imagen: Ziyang Wang y Shengxi Huang han desarrollado una herramienta que permite ideas precisas sobre proteínas virales y marcadores de enfermedades cerebrales (foto cortesía de Jeff Fitlow/Universidad Rice)

Algoritmo de firma de luz permite diagnósticos médicos más rápidos y precisos

Cada material o molécula interactúa con la luz de forma única, creando un patrón distintivo, similar a una huella dactilar. La espectroscopia óptica, que consiste en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.