Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
LGC Clinical Diagnostics

Deascargar La Aplicación Móvil





Algoritmo de aprendizaje profundo que detecta el SDRA con exactitud a nivel de experto podría cambiar el juego en el tratamiento de la COVID-19

Por el equipo editorial de LabMedica en español
Actualizado el 27 Apr 2021
Print article
Ilustración
Ilustración
Los investigadores han encontrado una solución que podría ayudar a brindar la atención adecuada a los pacientes con COVID-19 con síndrome de dificultad respiratoria aguda (SDRA), que es una lesión pulmonar, potencialmente mortal, que progresa rápidamente y, a menudo, puede provocar problemas de salud a largo plazo o la muerte, pero puede ser difícil de reconocer para los médicos.

Un equipo de investigación del Centro de Investigación Integrativa en Cuidados Intensivos de Michigan (MCIRCC; Ann Arbor, MI, EUA), desarrolló un nuevo algoritmo de inteligencia artificial (IA) que analiza las radiografías de tórax para detectar el SDRA. Muchos pacientes que mueren de COVID-19 mueren por complicaciones asociadas con el SDRA, que ocurre cuando el líquido se acumula en los sacos de aire de los pulmones y priva a los órganos del oxígeno que necesitan para funcionar.

La interpretación exacta de la radiografía de tórax de un paciente es un componente fundamental del diagnóstico de SDRA. Sin embargo, los estudios demuestran que hasta el 65% de los pacientes con SDRA se diagnostican tarde o se pasan por alto y no reciben terapias basadas en evidencia que mejoren los resultados. Cada día de retraso en el tratamiento basado en la evidencia se asocia con un aumento de la mortalidad. Por lo tanto, existe una necesidad urgente de herramientas computacionales que puedan analizar los estudios de radiología torácica para ayudar a los médicos con la vigilancia del SDRA en tiempo real y garantizar la fidelidad con los tratamientos basados en la evidencia.

El equipo de investigación de MCIRCC demostró que su algoritmo de inteligencia artificial que analiza las radiografías de tórax para el SDRA podría, de hecho, identificar los hallazgos del SDRA con mayor precisión que muchos médicos. También funcionó bien cuando fue validado externamente en pacientes de otro sistema hospitalario. El algoritmo que utilizaron, un tipo de modelo de aprendizaje automático llamado redes neuronales convolucionales profundas (CNN), tenía 121 capas y siete millones de parámetros.

Usando un enfoque innovador, el equipo entrenó el algoritmo para identificar hallazgos radiológicos comunes, pero no de SDRA, en 450.000 radiografías de tórax de fuentes disponibles públicamente. Luego entrenaron el algoritmo para detectar el SDRA a través de un conjunto de datos único de 8.000 estudios de rayos X de tórax cuidadosamente revisados y anotados para SDRA por médicos de Michigan Medicine. Este enfoque se denomina aprendizaje por transferencia, que tiene muchos paralelismos con la forma en que aprenden los seres humanos. Se necesitan más investigaciones para evaluar el impacto del algoritmo en un entorno clínico, pero el equipo de MCIRCC confía en que cambiará las reglas del juego. Ellos prevén que ayudará a los médicos a identificar a los pacientes con SDRA de manera más rápida y exacta y garantizará que los pacientes reciban atención basada en evidencia.

“En nuestro trabajo anterior, encontramos que los médicos tienen dificultades para identificar los hallazgos del SDRA en las radiografías de tórax”, dijo el Dr. Michael Sjoding, neumólogo crítico de Michigan Medicine y autor principal del estudio. “El reconocimiento y tratamiento tempranos son factores clave en el tratamiento del SDRA. Los retrasos pueden ser catastróficos. Ahora tenemos una forma altamente confiable de identificar a los pacientes con SDRA, lo que también nos permitirá estudiarlos de manera más efectiva”.

Enlace relacionado:
Centro de Investigación Integrativa en Cuidados Intensivos de Michigan

New
Miembro Oro
Human Chorionic Gonadotropin Test
hCG Quantitative - R012
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Benchtop Cooler
PCR-Cooler & PCR-Rack
New
Typhoid Rapid Test
OnSite Typhoid IgG/IgM Combo Rapid Test

Print article

Canales

Diagnóstico Molecular

ver canal
Imagen: macrófagos infectados con Mycobacterium tuberculosis (foto cortesía del MIT)

Nueva etiqueta molecular desarrolla pruebas de tuberculosis más sencillas y rápidas

La tuberculosis (TB), la enfermedad infecciosa más mortal a nivel mundial, infecta a aproximadamente 10 millones de personas cada año y causa más de un millón de muertes al año.... Más

Inmunología

ver canal
Imagen: la prueba de células madre del cáncer puede elegir con precisión tratamientos más efectivos (fotografía cortesía de la Universidad de Cincinnati)

Prueba de células madre predice resultado del tratamiento en cáncer de ovario resistente al platino

El cáncer de ovario epitelial suele responder inicialmente a la quimioterapia, pero con el tiempo, el tumor desarrolla resistencia a la terapia, lo que provoca su recrecimiento. Esta resistencia... Más

Tecnología

ver canal
Imagen: Ziyang Wang y Shengxi Huang han desarrollado una herramienta que permite ideas precisas sobre proteínas virales y marcadores de enfermedades cerebrales (foto cortesía de Jeff Fitlow/Universidad Rice)

Algoritmo de firma de luz permite diagnósticos médicos más rápidos y precisos

Cada material o molécula interactúa con la luz de forma única, creando un patrón distintivo, similar a una huella dactilar. La espectroscopia óptica, que consiste en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.