Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
INTEGRA BIOSCIENCES AG

Deascargar La Aplicación Móvil





Modelo automatizado de IA basado en imágenes de TC predice la progresión de la enfermedad y la mortalidad en los pacientes con COVID-19

Por el equipo editorial de LabMedica en español
Actualizado el 04 May 2021
Print article
Ilustración
Ilustración
Los investigadores desarrollaron un modelo automatizado de predicción de supervivencia basado en imágenes, usando el aprendizaje profundo de imágenes de tomografía computarizada (TC) de tórax, para una evaluación clínica rápida y exacta de la progresión y la mortalidad de la COVID-19.

En una evaluación del modelo, denominado U-supervivencia, desarrollado por investigadores del Hospital Brigham and Women's (Boston, MA, EUA), los resultados indicaron que se puede utilizar para proporcionar predicciones pronósticas automatizadas y objetivas para el tratamiento de pacientes con COVID-19.

Las imágenes de tórax pueden ayudar a los médicos a decidir si admitir o dar de alta a los pacientes con síntomas leves de COVID-19, si admitir a pacientes con síntomas de COVID-19 de moderados a graves en una sala regular o en una unidad de cuidados intensivos (UCI), y proporcionar información sobre el manejo terapéutico de pacientes hospitalizados con síntomas de COVID-19 de moderados a graves. La TC es el método de imágenes de tórax más sensible para la COVID-19.

El modelo U-supervivencia integra la información de las imágenes extraídas por aprendizaje profundo (U-Net) directamente en un modelo de riesgos proporcionales de Cox con una penalización de red elástica (modelo de Cox de red elástica) para realizar la predicción de pronóstico de pacientes con COVID-19. Después de entrenar a U-Net para realizar la segmentación semántica de los patrones de tejido pulmonar de las imágenes de TC de tórax, los investigadores sometieron la sección de cuello de botella de U-Net a un modelo de Cox de red elástica que selecciona automáticamente un subconjunto escaso de características para construir un modelo óptimo de supervivencia para los datos de entrada. Su enfoque se inspiró en la radiómica en el sentido de que los investigadores utilizaron una penalización de red elástica para construir una firma radiómica profunda para el análisis de supervivencia a partir de una gran cantidad de características extraídas de las imágenes internamente por U-Net.

Los investigadores demostraron que el aprendizaje profundo de las imágenes de TC de tórax se puede utilizar como parte integral de un modelo automatizado de predicción de supervivencia basado en imágenes usando la metodología de análisis de supervivencia tradicional. Esto hizo posible obtener información de supervivencia completa que no estaba disponible con los modelos de predicción propuestos anteriormente. En su evaluación de 383 pacientes positivos para COVID-19 de dos hospitales, el modelo U-supervivencia superó significativamente las pruebas de laboratorio existentes y los predictores visuales y cuantitativos basados en imágenes en la predicción de la progresión de la enfermedad y la mortalidad de los pacientes con COVID-19. Los resultados indican que el modelo U-supervivencia se puede utilizar para proporcionar predicciones pronósticas automatizadas y objetivas para el tratamiento de los pacientes con COVID-19.

Enlace relacionado:
Hospital Brigham and Women's

Miembro Oro
HISOPOS DE FIBRA FLOCADA
Puritan® Patented HydraFlock®
Verification Panels for Assay Development & QC
Seroconversion Panels
New
TRAb Immunoassay
Chorus TRAb
New
Herpes Simplex Virus ELISA
HSV 2 IgG – ELISA

Print article

Canales

Química Clínica

ver canal
Imagen: una prueba de laboratorio confirmatoria de un solo paso podría diagnosticar definitivamente la infección de sífilis activa en 10 minutos (foto cortesía de Adobe Stock)

Primera prueba integral de sífilis diagnostica definitivamente infección activa en 10 minutos

En Estados Unidos, los casos de sífilis aumentaron casi un 80 % entre 2018 y 2023, con 209.253 casos registrados en el último año con datos. La sífilis, que puede transmitirse... Más

Inmunología

ver canal
Imagen: la prueba de células madre del cáncer puede elegir con precisión tratamientos más efectivos (fotografía cortesía de la Universidad de Cincinnati)

Prueba de células madre predice resultado del tratamiento en cáncer de ovario resistente al platino

El cáncer de ovario epitelial suele responder inicialmente a la quimioterapia, pero con el tiempo, el tumor desarrolla resistencia a la terapia, lo que provoca su recrecimiento. Esta resistencia... Más

Tecnología

ver canal
Imagen: Ziyang Wang y Shengxi Huang han desarrollado una herramienta que permite ideas precisas sobre proteínas virales y marcadores de enfermedades cerebrales (foto cortesía de Jeff Fitlow/Universidad Rice)

Algoritmo de firma de luz permite diagnósticos médicos más rápidos y precisos

Cada material o molécula interactúa con la luz de forma única, creando un patrón distintivo, similar a una huella dactilar. La espectroscopia óptica, que consiste en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.