Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
Werfen

Deascargar La Aplicación Móvil





Modelo automatizado de IA basado en imágenes de TC predice la progresión de la enfermedad y la mortalidad en los pacientes con COVID-19

Por el equipo editorial de LabMedica en español
Actualizado el 04 May 2021
Los investigadores desarrollaron un modelo automatizado de predicción de supervivencia basado en imágenes, usando el aprendizaje profundo de imágenes de tomografía computarizada (TC) de tórax, para una evaluación clínica rápida y exacta de la progresión y la mortalidad de la COVID-19.

En una evaluación del modelo, denominado U-supervivencia, desarrollado por investigadores del Hospital Brigham and Women's (Boston, MA, EUA), los resultados indicaron que se puede utilizar para proporcionar predicciones pronósticas automatizadas y objetivas para el tratamiento de pacientes con COVID-19.

Las imágenes de tórax pueden ayudar a los médicos a decidir si admitir o dar de alta a los pacientes con síntomas leves de COVID-19, si admitir a pacientes con síntomas de COVID-19 de moderados a graves en una sala regular o en una unidad de cuidados intensivos (UCI), y proporcionar información sobre el manejo terapéutico de pacientes hospitalizados con síntomas de COVID-19 de moderados a graves. Más...
La TC es el método de imágenes de tórax más sensible para la COVID-19.

El modelo U-supervivencia integra la información de las imágenes extraídas por aprendizaje profundo (U-Net) directamente en un modelo de riesgos proporcionales de Cox con una penalización de red elástica (modelo de Cox de red elástica) para realizar la predicción de pronóstico de pacientes con COVID-19. Después de entrenar a U-Net para realizar la segmentación semántica de los patrones de tejido pulmonar de las imágenes de TC de tórax, los investigadores sometieron la sección de cuello de botella de U-Net a un modelo de Cox de red elástica que selecciona automáticamente un subconjunto escaso de características para construir un modelo óptimo de supervivencia para los datos de entrada. Su enfoque se inspiró en la radiómica en el sentido de que los investigadores utilizaron una penalización de red elástica para construir una firma radiómica profunda para el análisis de supervivencia a partir de una gran cantidad de características extraídas de las imágenes internamente por U-Net.

Los investigadores demostraron que el aprendizaje profundo de las imágenes de TC de tórax se puede utilizar como parte integral de un modelo automatizado de predicción de supervivencia basado en imágenes usando la metodología de análisis de supervivencia tradicional. Esto hizo posible obtener información de supervivencia completa que no estaba disponible con los modelos de predicción propuestos anteriormente. En su evaluación de 383 pacientes positivos para COVID-19 de dos hospitales, el modelo U-supervivencia superó significativamente las pruebas de laboratorio existentes y los predictores visuales y cuantitativos basados en imágenes en la predicción de la progresión de la enfermedad y la mortalidad de los pacientes con COVID-19. Los resultados indican que el modelo U-supervivencia se puede utilizar para proporcionar predicciones pronósticas automatizadas y objetivas para el tratamiento de los pacientes con COVID-19.

Enlace relacionado:
Hospital Brigham and Women's


Miembro Oro
Blood Gas Analyzer
Stat Profile pHOx
Portable Electronic Pipette
Mini 96
Automated Chemiluminescence Immunoassay Analyzer
MS-i3080
6 Part Hematology Analyzer with RET + IPF
Mispa HX 88
Lea el artículo completo al registrarse hoy mismo, es GRATIS! ¡Es GRATUITO!
Regístrese GRATIS a LabMedica.es y acceda a las noticias y eventos que afectan al mundo del Laboratorio.
  • Edición gratuita de la versión digital de Lab Medica en Español enviado regularmente por email
  • Revista impresa gratuita de la revista Lab Medica en Español (disponible únicamente fuera de EUA y Canadá).
  • Acceso gratuito e ilimitado a ediciones anteriores de Lab Medica en Español digital
  • Boletín de Lab Medica en Español gratuito cada dos semanas con las últimas noticias
  • Noticias de último momento enviadas por email
  • Acceso gratuito al calendario de eventos
  • Acceso gratuito a los servicios de nuevos productos de LinkXpress
  • Registrarse es sencillo y GRATUITO!
Haga clic aquí para registrarse








Canales

Hematología

ver canal
Imagen: un esquema que ilustra la cascada de coagulación in vitro (fotografía cortesía de Harris, N., 2024)

Nueva guía de ADLM sobre pruebas de coagulación mejora atención a pacientes que toman anticoagulantes

Los anticoagulantes orales directos (ACOD) son uno de los tipos más comunes de anticoagulantes. Los pacientes los toman para prevenir diversas complicaciones derivadas de la coagulación ... Más

Microbiología

ver canal
Imagen: el EBP y EBP plus han recibido la autorización 510(k) de la FDA y la certificación CE-IVDR para su uso en el sistema BD COR (fotografía cortesía de BD)

Paneles entéricos de alto rendimiento detectan múltiples infecciones bacterianas gastrointestinales

Las infecciones gastrointestinales (GI) se encuentran entre las causas más comunes de enfermedad a nivel mundial, provocando más de 1,7 millones de muertes anuales y suponiendo una gran carga para los... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.