Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
Werfen

Deascargar La Aplicación Móvil




Nuevo conjunto de datos de células plasmáticas facilita diagnóstico del mieloma múltiple

Por el equipo editorial de LabMedica en español
Actualizado el 08 Feb 2025
Imagen: el conjunto de datos de células plasmáticas se creó para ayudar en el diagnóstico preciso (foto cortesía de Shutterstock)
Imagen: el conjunto de datos de células plasmáticas se creó para ayudar en el diagnóstico preciso (foto cortesía de Shutterstock)

El mieloma es un cáncer de sangre poco común que se origina en las células plasmáticas, un tipo de célula inmunitaria responsable de producir anticuerpos que ayudan a combatir las infecciones. La enfermedad comienza cuando una célula plasmática anormal comienza a dividirse de forma descontrolada en la médula ósea (el tejido blando que se encuentra dentro de los huesos), lo que lleva a la producción de una gran cantidad de células anormales genéticamente idénticas. Estas células, conocidas como células clonales, no funcionan como lo harían las células plasmáticas normales, sino que desplazan a las células sanguíneas sanas en la médula ósea, alterando su crecimiento. Cuando el mieloma afecta a más de un sitio de la médula ósea, que es el caso habitual, se denomina mieloma múltiple (MM). Para confirmar el diagnóstico de mieloma, los médicos realizan una biopsia, que implica la recolección de una muestra de células de la médula ósea. Si hay mieloma, al menos el 10 % de las células de la muestra serán células plasmáticas anormales. Esta muestra suele ser analizada manualmente por un experto, que examina el tejido bajo un microscopio y cuenta las células. Sin embargo, este proceso lleva mucho tiempo y requiere mucho trabajo, por lo que requiere recursos importantes. Además, pueden producirse inconsistencias en la interpretación de los resultados, lo que afecta la precisión del diagnóstico, dependiendo de la experiencia del evaluador. Esto puede ser particularmente complicado en regiones con menos profesionales capacitados.

Para abordar estos problemas y mejorar el proceso de diagnóstico del mieloma, investigadores del Instituto de Computación de la Universidad Federal de Bahía (Salvador, Brasil) han desarrollado un gran conjunto de datos de células de la médula ósea de pacientes con mieloma múltiple y otros trastornos sanguíneos. Este conjunto de datos, llamado PCMMD (células plasmáticas para el diagnóstico del mieloma múltiple), se creó para ayudar a realizar un diagnóstico preciso del mieloma múltiple. Los datos se recopilaron de personas diagnosticadas y tratadas dentro del sistema de salud pública brasileño. Se fotografiaron miles de células de la médula ósea de estos pacientes con la cámara de un teléfono inteligente después de visualizarlas con un microscopio. Luego, los hematólogos, expertos en trastornos sanguíneos, analizaron manualmente las imágenes y etiquetaron las células como células plasmáticas o no plasmáticas. Los investigadores creen que este conjunto de datos podría mejorar la eficiencia y la precisión del diagnóstico del mieloma múltiple, especialmente en áreas con recursos limitados donde los expertos capacitados son escasos.

Además de ayudar a los médicos con menos experiencia a identificar las células del mieloma, los investigadores esperan que su conjunto de datos sirva como base para desarrollar sistemas basados en IA que puedan distinguir automáticamente las células plasmáticas de las células no plasmáticas. Estos avances, señalaron, podrían mejorar el proceso de diagnóstico para todos los médicos y, en última instancia, beneficiar a los pacientes. Para probar el potencial de su conjunto de datos, los investigadores lo utilizaron para entrenar un algoritmo basado en IA para reconocer células plasmáticas y no plasmáticas en muestras de médula ósea. Los resultados, publicados en Scientific Data, mostraron que el modelo funcionó bien, clasificando correctamente las células. El estado de la enfermedad predicho por el modelo de IA coincidió con el diagnóstico realizado por un experto para nueve de cada diez pacientes. Dada la metodología simple basada en teléfonos inteligentes, los científicos destacaron que este enfoque podría implementarse fácilmente, incluso en entornos con recursos limitados. El equipo tiene como objetivo que su conjunto de datos esté ampliamente disponible, alentando a otros investigadores a aprovecharlo y desarrollar modelos de IA aún más avanzados para mejorar el diagnóstico del mieloma.

“Teniendo en cuenta todos los análisis… estamos seguros de que nuestro conjunto de datos contiene patrones valiosos para identificar células plasmáticas y no plasmáticas, lo que proporciona una configuración importante y de bajo costo para apoyar a los hematólogos”, escribieron los investigadores. “La disponibilidad de nuestro conjunto de datos y modelo de referencia respalda la investigación y el desarrollo en curso en el campo, lo que promueve la mejora continua en la precisión y la eficiencia de los diagnósticos de MM”.

Enlaces relacionados:
Instituto de Computación de la Universidad Federal de Bahía

New
Miembro Oro
Clinical Drug Testing Panel
DOA Urine MultiPlex
KIT DE PRUEBA POC PARA H.PYLORI
Hepy Urease Test
CONTROL QUÍMICO DE LA ORINA
Dropper Urine Chemistry Control
Human Estradiol Assay
Human Estradiol CLIA Kit

Canales

Química Clínica

ver canal
Imagen: una técnica rápida de espectrometría de masas permite la detección de medicamentos casi en tiempo real en entornos de atención de emergencia (Boccuzzi, S. et al., Analyst 151, 741–748 (2026). DOI: 10.1039/D5AN01148E)

Método rápido de análisis sanguíneo permite decisiones más seguras en emergencias por medicamentos

La intoxicación aguda por drogas recreativas es un motivo frecuente de visitas a urgencias; sin embargo, los médicos rara vez tienen acceso a resultados toxicológicos confirmatorios... Más

Diagnóstico Molecular

ver canal
Imagen: el análisis de ADNtc impulsado por IA proporciona a los médicos una nueva lente para monitorear la evolución de la enfermedad (fotografía cortesía de Brandon Stelter, Katie Han, Kyle Smith y Paul Northcott)

Biopsia líquida impulsada por IA clasifica tumores cerebrales pediátricos con alta precisión

Las biopsias líquidas ofrecen una forma no invasiva de estudiar el cáncer mediante el análisis del ADN tumoral circulante en fluidos corporales. Sin embargo, en los tumores cerebrales... Más

Inmunología

ver canal
Imagen: el biomarcador computacional TmS analiza la expresión genética tumoral y los datos del microambiente para guiar las decisiones de tratamiento (fotografía cortesía del MD Anderson Cancer Center)

Nuevo biomarcador predice respuesta a quimioterapia en cáncer de mama triple negativo

El cáncer de mama triple negativo es una forma agresiva de cáncer de mama en la que las pacientes suelen mostrar respuestas muy variables a la quimioterapia. Predecir quién se ben... Más

Microbiología

ver canal
Imagen: la tecnología basada en CRISPR elimina elementos resistentes a los antibióticos de poblaciones de bacterias (fotografía cortesía de Bier Lab/UC San Diego)

Tecnología con CRISPR neutraliza bacterias resistentes a antibióticos

La resistencia a los antibióticos se ha convertido en una crisis sanitaria mundial, con proyecciones que estiman más de 10 millones de muertes al año para 2050 a medida que las &q... Más
Copyright © 2000-2026 Globetech Media. All rights reserved.