Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
LGC Clinical Diagnostics

Deascargar La Aplicación Móvil





Herramienta de inteligencia artificial (IA) predice la necesidad de oxígeno de los pacientes hospitalizados con COVID-19 en cualquier parte del mundo

Por el equipo editorial de LabMedica en español
Actualizado el 22 Sep 2021
Los investigadores han utilizado inteligencia artificial (IA) para predecir las necesidades de oxígeno de los pacientes con COVID-19 a escala global.

El Hospital de Addenbrooke (Cambridge, Inglaterra), junto con otros 20 hospitales de todo el mundo y la empresa de tecnología de inteligencia artificial NVIDIA (Santa Clara, CA, EUA), crearon una herramienta de inteligencia artificial para predecir cuánto oxígeno adicional puede necesitar un paciente con COVID-19 en los primeros días de atención hospitalaria, utilizando datos de cuatro continentes. Más...
La técnica, conocida como aprendizaje federado, utilizó un algoritmo para analizar radiografías de tórax y datos electrónicos de salud de pacientes hospitalarios con síntomas de COVID-19.

Para mantener la estricta confidencialidad del paciente, los datos del paciente se anonimizaron por completo y se envió un algoritmo a cada hospital para que ningún dato fuese compartido o abandonara su ubicación. Una vez que el algoritmo “aprendió” de los datos, el análisis se reunió para construir una herramienta de inteligencia artificial que pudiera predecir las necesidades de oxígeno de los pacientes hospitalizados con COVID-19 en cualquier parte del mundo. El estudio denominado EXAM (por EMR CXR AI Modelo), fue uno de los estudios de aprendizaje clínico federado más grandes y diversos hasta la fecha. Para comprobar la exactitud de EXAM, se probó en varios hospitales de los cinco continentes. En el estudio se analizaron los resultados de alrededor de 10.000 pacientes con COVID-19 de todo el mundo. Los resultados mostraron que predijo el oxígeno necesario dentro de las 24 horas posteriores a la llegada del paciente al departamento de emergencias, con una sensibilidad del 95% y una especificidad de más del 88%.

“El aprendizaje federado tiene un poder transformador para llevar la innovación de la IA al flujo de trabajo clínico”, dijo la profesora, Fiona Gilbert, quien dirigió el estudio. “Nuestro trabajo continuo con EXAM demuestra que este tipo de colaboraciones globales son repetibles y más eficientes, de modo que podamos satisfacer las necesidades de los médicos para abordar desafíos de salud complejos y epidemias futuras”.

“Por lo general, en el desarrollo de la IA, cuando se crea un algoritmo con los datos de un hospital, no funciona bien en ningún otro hospital”, dijo el Dr. Ittai Dayan, primer autor del estudio. “Al desarrollar el modelo EXAM utilizando aprendizaje federado y datos objetivos y multimodales de diferentes continentes, pudimos construir un modelo generalizable que puede ayudar a los médicos de primera línea en todo el mundo”.

Enlace relacionado:
Hospital de Addenbrooke


Miembro Oro
Veterinary Hematology Analyzer
Exigo H400
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Typhoid Rapid Test
OnSite Typhoid IgG/IgM Combo Rapid Test
New
Cytomegalovirus Real-Time PCR Test
Quanty CMV Virus System
Lea el artículo completo al registrarse hoy mismo, es GRATIS! ¡Es GRATUITO!
Regístrese GRATIS a LabMedica.es y acceda a las noticias y eventos que afectan al mundo del Laboratorio.
  • Edición gratuita de la versión digital de Lab Medica en Español enviado regularmente por email
  • Revista impresa gratuita de la revista Lab Medica en Español (disponible únicamente fuera de EUA y Canadá).
  • Acceso gratuito e ilimitado a ediciones anteriores de Lab Medica en Español digital
  • Boletín de Lab Medica en Español gratuito cada dos semanas con las últimas noticias
  • Noticias de último momento enviadas por email
  • Acceso gratuito al calendario de eventos
  • Acceso gratuito a los servicios de nuevos productos de LinkXpress
  • Registrarse es sencillo y GRATUITO!
Haga clic aquí para registrarse








Canales

Química Clínica

ver canal
Imagen: la QIP-MS podría predecir y detectar la recaída del mieloma más temprano en comparación con las técnicas utilizadas actualmente (foto cortesía de Adobe Stock)

Monitorización con espectrometría de masas predice e identifica recaída temprana del mieloma

El mieloma, un tipo de cáncer que afecta la médula ósea, es actualmente incurable, aunque muchos pacientes pueden vivir más de 10 años tras el diagnóstico.... Más

Inmunología

ver canal
Imagen: la prueba de células madre del cáncer puede elegir con precisión tratamientos más efectivos (fotografía cortesía de la Universidad de Cincinnati)

Prueba de células madre predice resultado del tratamiento en cáncer de ovario resistente al platino

El cáncer de ovario epitelial suele responder inicialmente a la quimioterapia, pero con el tiempo, el tumor desarrolla resistencia a la terapia, lo que provoca su recrecimiento. Esta resistencia... Más

Tecnología

ver canal
Imagen: Ziyang Wang y Shengxi Huang han desarrollado una herramienta que permite ideas precisas sobre proteínas virales y marcadores de enfermedades cerebrales (foto cortesía de Jeff Fitlow/Universidad Rice)

Algoritmo de firma ligera permite diagnósticos médicos más rápidos y precisos

Cada material o molécula interactúa con la luz de forma única, creando un patrón distintivo, similar a una huella dactilar. La espectroscopia óptica, que consiste en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.