Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
INTEGRA BIOSCIENCES AG

Olympus

Manufactures optical and digital equipment for the healthcare and consumer electronics sectors, including endoscopy a... más Productos destacados: More products

Deascargar La Aplicación Móvil




Mejoran el diagnóstico automatizado de malaria mediante redes neuronales profundas

Por el equipo editorial de LabMedica en español
Actualizado el 10 Aug 2020
Imagen: Trofozoítos en forma de anillo de Plasmodium falciparum y un glóbulo blanco en un extendido de gota gruesa (Fotografía cortesía de Medical Care Development International).
Imagen: Trofozoítos en forma de anillo de Plasmodium falciparum y un glóbulo blanco en un extendido de gota gruesa (Fotografía cortesía de Medical Care Development International).
La malaria por Plasmodium falciparum se mantiene como una de las mayores cargas sanitarias mundiales con más de 228 millones de casos en todo el mundo en 2018. En ese año hubo aproximadamente 405.000 muertes por malaria en todo el mundo, y la región africana representó el 93% de estas muertes, principalmente entre niños.

Aunque hay una variedad de técnicas que se han desarrollado para el diagnóstico del paludismo, la microscopía óptica convencional en un frotis de sangre de gota gruesa y un extendido delgado coloreado con Giemsa sigue siendo el estándar de oro. Técnicas como la reacción en cadena de la polimerasa, el ensayo de citometría de flujo y los métodos basados en colorantes de fluorescencia carecen de una metodología estandarizada universalmente, presentan costos elevados y requieren una mejora en el control de calidad.

Un equipo de científicos del Colegio Universitario de Londres (Londres, Reino Unido) aprovechó las etiquetas de microscopía clínica de rutina de sus clínicas de malaria con control de calidad, para capacitar a un clasificador de malaria de red neuronal convolucional profunda (DeepMCNN), para el diagnóstico automatizado de la malaria. El sistema DeepMCNN también proporciona recuentos totales de parásitos de la malaria (PM) y glóbulos blancos (WBC) que permiten un cálculo de la parasitemia en PM/μL. Los parásitos de la malaria se detectaron y contaron mediante microscopía operada por expertos humanos después de la coloración de Giemsa de frotis de sangre gruesos y delgados. El criterio para declarar a un participante libre de parásitos de la malaria fue que no hubiera parásitos detectables en 100 campos de gran aumento (100 ×) en frotis gruesos.

Los investigadores capturaron imágenes con un microscopio BX63 de campo brillante vertical (Olympus, Tokio, Japón), equipado con una lente objetivo 100 ×/1,4 NA, una plataforma de posicionamiento de muestras x-y motorizada (Prior Scientific, Cambridge, Reino Unido) y una cámara a color para capturar imágenes de muestras de gota gruesa coloreadas con Giemsa. Estos frotis preparados en sus clínicas ensayaron el uso de métodos de detección de objetos basados en el aprendizaje profundo para identificar tanto los parásitos de P. falciparum como los núcleos de glóbulos blancos (GB) en las imágenes de extensiones de sangre de gota gruesa con profundidad de campo extendida (EDoF).

El equipo informó que la validación prospectiva de DeepMCNN logró una sensibilidad/especificidad de 0,92/0,90 frente al diagnóstico de malaria a nivel de expertos. El desempeño de VPP/VPN fue de 0,92/0,90, que es clínicamente utilizable en sus entornos holoendémicos en una metrópoli densamente poblada.

Los autores concluyeron que sus datos abiertos y en DeepMCNN, fácilmente implementable, proporcionan una plataforma clínicamente relevante, donde otros proveedores de atención médica podrían aprovechar sus etiquetas de diagnóstico de nivel de paciente, fácilmente disponibles, para adaptar y mejorar aún más la exactitud del clasificador DeepMCNN para su configuración de ruta clínica. El estudio fue publicado en la edición de agosto de 2020 de la revista American Journal of Hematology.

Enlace relacionado:
Colegio Universitario de Londres
Prior Scientific

New
Miembro Oro
Automatic CLIA Analyzer
Shine i9000
KIT DE PRUEBA POC PARA H.PYLORI
Hepy Urease Test
Miembro Oro
ENSAYO INMUNOCROMATOGRÁFICO
CRYPTO Cassette
ESR Analyzer
TEST1 2.0

Canales

Hematología

ver canal
Imagen: las células leucémicas residuales pueden predecir la supervivencia a largo plazo en la leucemia mieloide aguda (fotografía cortesía de Shutterstock)

Pruebas de MRD podrían predecir supervivencia en pacientes con leucemia

La leucemia mieloide aguda es un cáncer sanguíneo agresivo que altera la producción normal de células sanguíneas y suele recaer incluso después de un tratamiento intensivo.... Más

Inmunología

ver canal
Imagen: el simple marcador sanguíneo puede predecir qué pacientes con linfoma se beneficiarán más de la terapia con células T CAR (fotografía cortesía de Shutterstock)

Análisis de sangre rutinario puede predecir mayor beneficiario de terapia con células T CAR

La terapia con células T CAR ha transformado el tratamiento para pacientes con linfoma no Hodgkin en recaída o resistente al tratamiento. Sin embargo, muchos pacientes finalmente recaen a... Más

Patología

ver canal
Imagen: determinación de EG añadido a jarabes medicinales: se muestran imágenes ampliadas de las almohadillas en las tiras. Los cuadros rojos muestran dónde se puede ver el color azul en la almohadilla cuando se observa visualmente (Arman, B.Y., Legge, I., Walsby-Tickle, J. et al. https://doi.org/10.1038/s41598-025-26670-1)

Pruebas rápidas y económicas pueden prevenir muertes infantiles por jarabes medicinales contaminados

Jarabes medicinales contaminados con sustancias químicas tóxicas han causado la muerte de cientos de niños en todo el mundo, lo que revela una grave deficiencia en el análisis... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.