Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros

Deascargar La Aplicación Móvil




Nuevo modelo computacional mejora significativamente calidad de imágenes de microscopía

Por el equipo editorial de LabMedica en español
Actualizado el 26 Dec 2024
Imagen: ilustración de un modelo m-rBCR para microscopía de luz (foto cortesía de HZDR/a. Yakimovich)
Imagen: ilustración de un modelo m-rBCR para microscopía de luz (foto cortesía de HZDR/a. Yakimovich)

El procesamiento computacional de imágenes permite el examen detallado de muestras utilizando diversos microscopios ópticos. Si bien se han logrado avances significativos en este campo, aún existe potencial para mejorar aspectos como el contraste y la resolución de las imágenes. Ahora, un nuevo modelo computacional, basado en una arquitectura avanzada de aprendizaje profundo, ofrece tiempos de procesamiento más rápidos y, al mismo tiempo, alcanza o supera la calidad de imagen de los métodos tradicionales.

El modelo, llamado Multi-Stage Residual-BCR Net (m-rBCR), fue desarrollado específicamente para imágenes de microscopía por investigadores del Helmholtz-Zentrum Dresden-Rossendorf (HZDR, Dresde, Alemania) y el Centro Max Delbrück de Medicina Molecular (Berlín, Alemania). Introduce un enfoque novedoso para el procesamiento de imágenes mediante la deconvolución, un método destinado a mejorar el contraste y la resolución de las imágenes digitales capturadas por microscopios ópticos, incluidos los de campo amplio, confocales o de transmisión. La deconvolución aborda el desenfoque de la imagen, que es un tipo de distorsión causada por el sistema óptico, y se puede realizar de dos formas principales: deconvolución explícita y deconvolución basada en aprendizaje profundo.

Las técnicas de deconvolución explícita se basan en el concepto de la función de dispersión de puntos (PSF), que describe cómo la luz procedente de una fuente puntual se dispersa por el sistema óptico, creando un patrón de difracción tridimensional. Esta dispersión hace que la luz desenfocada contribuya a la borrosidad de una imagen grabada. Al conocer la PSF de un sistema, la borrosidad se puede eliminar matemáticamente, lo que produce una representación más clara de la imagen original. Sin embargo, la deconvolución basada en la PSF está limitada por la dificultad de obtener datos de PSF precisos o exactos para ciertos sistemas. Se han desarrollado métodos de deconvolución a ciegas, en los que la PSF se estima a partir de la propia imagen, pero aún presentan desafíos significativos y han logrado avances limitados.

Para abordar esta cuestión, el equipo de investigación ha aplicado técnicas de "resolución de problemas inversos", que han demostrado ser eficaces en microscopía. Los problemas inversos implican determinar los factores subyacentes que conducen a ciertos resultados observados. La resolución de estos problemas normalmente requiere grandes cantidades de datos y algoritmos avanzados de aprendizaje profundo. Al igual que la deconvolución explícita, el objetivo es lograr imágenes de mayor resolución o mejor calidad. Para su enfoque, presentado en el ECCV, el equipo utilizó una red neuronal basada en la física llamada m-rBCR. En el procesamiento de imágenes, existen dos enfoques básicos: trabajar con la representación espacial de una imagen o su representación de frecuencia, la última de las cuales requiere transformar los datos espaciales. Cada método tiene sus ventajas, y la mayoría de los modelos de aprendizaje profundo operan en el dominio espacial, lo que funciona bien para fotografías generales. Sin embargo, las imágenes de microscopía, en particular las de microscopía de fluorescencia, a menudo son monocromáticas y suelen presentar fuentes de luz específicas contra un fondo oscuro.

Para abordar los desafíos únicos de las imágenes de microscopía, m-rBCR comienza con la representación de frecuencia. Este enfoque permite representaciones de datos ópticos más significativas y permite que el modelo resuelva la tarea de deconvolución con muchos menos parámetros en comparación con otros modelos de aprendizaje profundo. El equipo validó el modelo m-rBCR en cuatro conjuntos de datos diferentes: dos conjuntos de datos de microscopía simulados y dos reales. Demostró un alto rendimiento con significativamente menos parámetros de entrenamiento y tiempos de procesamiento más rápidos que los modelos de aprendizaje profundo actuales, al mismo tiempo que superó a los métodos de deconvolución explícitos.

“Esta nueva arquitectura aprovecha una forma olvidada de aprender representaciones más allá de los enfoques clásicos de redes neuronales convolucionales”, dijo el coautor, el profesor Misha Kudryashev, líder del grupo “Biología estructural in situ” del Centro Max Delbrück de Medicina Molecular. “Nuestro modelo reduce significativamente los parámetros potencialmente redundantes. Como muestran los resultados, esto no va acompañado de una pérdida de rendimiento. El modelo es explícitamente adecuado para imágenes de microscopía y, al tener una arquitectura liviana, desafía la tendencia de modelos cada vez más grandes que requieren cada vez más potencia de procesamiento”.

Miembro Oro
Fibrinolysis Assay
HemosIL Fibrinolysis Assay Panel
KIT DE PRUEBA POC PARA H.PYLORI
Hepy Urease Test
Capillary Blood Collection Tube
IMPROMINI M3
8-Channel Pipette
SAPPHIRE 20–300 µL

Canales

Diagnóstico Molecular

ver canal
Imagen: el dispositivo de diagnóstico puede indicar cómo responden los tumores cerebrales mortales al tratamiento con un simple análisis de sangre (fotografía cortesía de UQ)

Dispositivo de diagnóstico predice respuesta al tratamiento de tumores cerebrales mediante análisis sanguíneo

El glioblastoma es uno de los tipos más mortales de cáncer cerebral, en gran parte porque los médicos no cuentan con un método fiable para determinar la eficacia de los tratamientos... Más

Inmunología

ver canal
Imagen: las células tumorales circulantes aisladas de muestras de sangre podrían ayudar a guiar las decisiones sobre inmunoterapia (fotografía cortesía de Shutterstock)

Análisis de sangre identifica pacientes con cáncer pulmonar beneficiarios de fármaco de inmunoterapia

El cáncer de pulmón de células pequeñas (CPCP) es una enfermedad agresiva con opciones de tratamiento limitadas, e incluso las inmunoterapias recientemente aprobadas no benefician... Más

Microbiología

ver canal
Imagen: nueva evidencia sugiere que los desequilibrios en el microbioma intestinal pueden contribuir a la aparición y progresión del deterioro cognitivo leve y la enfermedad de Alzheimer (fotografía cortesía de Adobe Stock)

Nuevo estudio identifica características del microbioma intestinal asociadas con enfermedad de Alzheimer

La enfermedad de Alzheimer afecta a aproximadamente 6,7 millones de personas en Estados Unidos y a casi 50 millones en todo el mundo; sin embargo, el deterioro cognitivo temprano sigue siendo difícil de... Más
Copyright © 2000-2026 Globetech Media. All rights reserved.