Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
INTEGRA BIOSCIENCES AG

Deascargar La Aplicación Móvil




Sistema de diagnóstico con IA identifica parásitos de malaria en imágenes de frotis de sangre

Por el equipo editorial de LabMedica en español
Actualizado el 15 May 2025
Imagen: el sistema de diagnóstico basado en IA puede ayudar a los trabajadores de la salud a identificar la presencia de parásitos de malaria (foto cortesía de 123RF)
Imagen: el sistema de diagnóstico basado en IA puede ayudar a los trabajadores de la salud a identificar la presencia de parásitos de malaria (foto cortesía de 123RF)

El diagnóstico de la malaria se ha realizado tradicionalmente de forma manual mediante examen microscópico, un proceso que no solo requiere mucho tiempo, sino que también depende en gran medida de la experiencia y la precisión de los profesionales sanitarios. Factores como la fatiga, la escasez de profesionales cualificados y la apariencia variable del parásito en las distintas etapas de la vida suelen dificultar la precisión del diagnóstico. La aplicación de la inteligencia artificial (IA) en la atención sanitaria continúa expandiéndose, incluyendo su potencial para ayudar a diagnosticar enfermedades tropicales como la malaria, que sigue siendo una amenaza sanitaria importante en varias regiones del mundo.

Investigadores de la Agencia Nacional de Investigación e Innovación (BRIN, Yakarta, Indonesia) han desarrollado una herramienta de diagnóstico basada en IA para ayudar al personal sanitario a identificar los parásitos de la malaria. Este sistema analiza imágenes microscópicas de frotis sanguíneos finos y gruesos para detectar signos de infección. Para desarrollar esta herramienta, los investigadores utilizaron un conjunto de datos de 1.388 microfotografías de frotis sanguíneos recogidas en zonas endémicas de malaria en Indonesia. El conjunto de datos incluye varios tipos de parásitos de la malaria, como Plasmodium falciparum, P. vivax, P. malariae y P. ovale, junto con un caso de infección mixta y una muestra negativa.

Las primeras pruebas del sistema de diagnóstico basado en IA han arrojado resultados prometedores. El sistema se probó utilizando 35 micrografías de casos reales en zonas endémicas de malaria en Indonesia, que abarcan 3.362 células. La herramienta de IA demostró una gran capacidad para identificar parásitos de la malaria, con una sensibilidad del 84,37 % al distinguir entre células sanas e infectadas. El sistema alcanzó una precisión (puntuación F1) del 80,60 % y un valor predictivo positivo (VPP) del 77,14 % al identificar correctamente las especies de parásitos y sus estadios. Estos resultados sugieren que el sistema es altamente fiable para distinguir células sanguíneas infectadas de las sanas. Este sistema de diagnóstico también está diseñado para facilitar los análisis de sangre masivos sobre el terreno, donde un solo frotis puede requerir la observación de 500 a 1.000 eritrocitos o 200 leucocitos. La IA puede acelerar este proceso manteniendo la precisión.

Además de mejorar la eficiencia, este sistema también abre la posibilidad del diagnóstico remoto, lo que lo hace especialmente relevante para su uso en zonas desatendidas. Además, el sistema conserva el conocimiento y la experiencia microscópicos, lo que ayuda al personal sanitario con formación limitada. Los investigadores destacan la importancia de abordar factores como las características de los conjuntos de datos, la calidad de los datos, la selección de modelos y los métodos adecuados de evaluación del rendimiento en el desarrollo de la IA para aplicaciones biomédicas. La IA por sí sola no puede funcionar eficazmente; la colaboración entre expertos en informática e investigadores biomédicos es crucial para garantizar la fiabilidad de estas tecnologías. Con el potencial de mejorar significativamente la precisión diagnóstica y la prestación de servicios de salud en zonas endémicas de malaria, los investigadores se muestran optimistas de que la IA se convertirá en un aliado valioso en los esfuerzos nacionales de control de la malaria. El equipo se compromete a seguir perfeccionando el sistema mediante una amplia investigación colaborativa y ensayos de campo.

Enlaces relacionados:
BRIN

Miembro Oro
Fibrinolysis Assay
HemosIL Fibrinolysis Assay Panel
KIT DE PRUEBA POC PARA H.PYLORI
Hepy Urease Test
CBM Analyzer
Complete Blood Morphology (CBM) Analyzer
Capillary Blood Collection Tube
IMPROMINI M3

Canales

Química Clínica

ver canal
Imagen: la miniaturización de la compleja tecnología MS a escala de chip elimina el uso de equipos de laboratorio tradicionales (fotografía cortesía de Detect-ION)

Diagnóstico de aliento POC detecta patógenos causantes de neumonía

Pseudomonas aeruginosa es una causa importante de neumonía intrahospitalaria y asociada a la ventilación mecánica, especialmente en receptores de trasplante de pulmón y pacientes... Más

Diagnóstico Molecular

ver canal
Imagen: una prueba de biomarcadores sanguíneos ofrece un pronóstico más claro después de un paro cardíaco (fotografía cortesía de Adobe Stock)

Biomarcador sanguíneo mejora pronóstico de lesión cerebral temprana tras paro cardíaco

Tras un paro cardíaco, muchos pacientes permanecen inconscientes durante días, lo que deja a médicos y familiares con la incertidumbre de si es posible una recuperación significativa.... Más

Hematología

ver canal
Imagen: las células leucémicas residuales pueden predecir la supervivencia a largo plazo en la leucemia mieloide aguda (fotografía cortesía de Shutterstock)

Pruebas de MRD podrían predecir supervivencia en pacientes con leucemia

La leucemia mieloide aguda es un cáncer sanguíneo agresivo que altera la producción normal de células sanguíneas y suele recaer incluso después de un tratamiento intensivo. Actualmente, los médicos carecen... Más

Inmunología

ver canal
Imagen: el análisis de sangre ADNlc no invasivo puede identificar eventos adversos de la terapia de puntos de control inmunitario en pacientes con cáncer (Fotografía cortesía de Elizabeth Cook)

Análisis sanguíneo podría detectar efectos adversos de inmunoterapia

Los inhibidores de puntos de control inmunitario han transformado el tratamiento del cáncer, pero también pueden desencadenar graves efectos adversos inmunitarios que dañan órganos... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.