Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
INTEGRA BIOSCIENCES AG

Deascargar La Aplicación Móvil




Herramienta de clasificación del cáncer con IA impulsa tratamientos específicos

Por el equipo editorial de LabMedica en español
Actualizado el 27 Jun 2025

Los tumores constan de más de un solo tipo de célula: están compuestos por una variedad de células que crecen y responden al tratamiento de diferentes maneras. Más...

Esta variación, conocida como heterogeneidad, plantea un desafío significativo en el tratamiento del cáncer y puede resultar en peores resultados, particularmente en el caso del cáncer de mama triple negativo. Si bien la heterogeneidad es un problema conocido, los científicos aún carecen de conocimiento suficiente para definirla o mapearla con precisión. Hasta la fecha, los investigadores no han podido explicar completamente cómo difieren las células vecinas dentro de un tumor ni cómo organizar estas diferencias para mejorar los enfoques de tratamiento. Sin embargo, este tipo de conocimiento es crucial para determinar cómo eliminar todas las células en un tumor de manera efectiva mediante las terapias apropiadas. Ahora, los científicos han presentado y evaluado una nueva herramienta de inteligencia artificial (IA) diseñada para analizar mejor la complejidad de las células individuales dentro de los tumores, lo que potencialmente permite opciones de tratamiento más personalizadas para los pacientes.

Esta innovadora herramienta de IA, conocida como AAnet, fue creada y entrenada por un grupo internacional de investigadores codirigido por el Instituto Garvan de Investigación Médica (Darlinghurst, Australia). AAnet es capaz de identificar patrones biológicos entre células tumorales. El equipo de investigación aplicó la herramienta para estudiar los patrones de expresión génica en células tumorales individuales, centrándose en modelos preclínicos de cáncer de mama triple negativo, así como en muestras humanas de cáncer de mama ER-positivo, HER2-positivo y triple negativo. Su análisis reveló cinco grupos distintos de células cancerosas dentro de un mismo tumor, cada uno con características únicas de expresión génica que reflejaban diferencias sustanciales en su comportamiento. Estos grupos variaban en sus vías biológicas, probabilidad de metástasis, características de crecimiento y marcadores asociados con pronóstico desfavorable. El equipo planea investigar cómo estos grupos evolucionan con el tiempo, por ejemplo, antes y después de la exposición a la quimioterapia. Esto marca un hito significativo en la investigación del cáncer. Según los investigadores, el uso de AAnet para categorizar las células tumorales según su biología subyacente representa un posible punto de inflexión en el tratamiento del cáncer.

“Visualizamos un futuro en el que los médicos combinen este análisis de IA con los diagnósticos tradicionales de cáncer para desarrollar tratamientos más personalizados que aborden todos los tipos de células dentro del tumor específico de cada persona”, afirmó la profesora Sarah Kummerfeld, coautora principal del estudio y directora científica de Garvan. “Estos resultados representan una verdadera fusión de tecnología de vanguardia y biología que puede mejorar la atención al paciente. Nuestro estudio se centró en el cáncer de mama, pero podría aplicarse a otros tipos de cáncer y enfermedades, como las enfermedades autoinmunes. La tecnología ya existe”.

Enlaces relacionados:
Instituto Garvan de Investigación Médica


Miembro Oro
PRUEBA DE VIRUS SINCITIAL RESPIRATORIO
OSOM® RSV Test
Collection and Transport System
PurSafe Plus®
Gel Cards
DG Gel Cards
New
Miembro Plata
PLACAS PARA PCR
Diamond Shell PCR Plates
Lea el artículo completo al registrarse hoy mismo, es GRATIS! ¡Es GRATUITO!
Regístrese GRATIS a LabMedica.es y acceda a las noticias y eventos que afectan al mundo del Laboratorio.
  • Edición gratuita de la versión digital de Lab Medica en Español enviado regularmente por email
  • Revista impresa gratuita de la revista Lab Medica en Español (disponible únicamente fuera de EUA y Canadá).
  • Acceso gratuito e ilimitado a ediciones anteriores de Lab Medica en Español digital
  • Boletín de Lab Medica en Español gratuito cada dos semanas con las últimas noticias
  • Noticias de último momento enviadas por email
  • Acceso gratuito al calendario de eventos
  • Acceso gratuito a los servicios de nuevos productos de LinkXpress
  • Registrarse es sencillo y GRATUITO!
Haga clic aquí para registrarse








Canales

Diagnóstico Molecular

ver canal
Imagen: las muestras de orina pueden indicar nefritis lúpica sin necesidad de repetidas y dolorosas biopsias renales (fotografía cortesía de Shutterstock)

Análisis de orina podría reemplazar dolorosas biopsias renales para pacientes con lupus

El lupus es una enfermedad autoinmune que provoca que el sistema inmunitario ataque los propios tejidos y órganos del cuerpo. De los cinco millones de personas que viven con lupus en todo el mundo,... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.