Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros

Deascargar La Aplicación Móvil




Método de IA identifica fenotipos de enfermedades mediante imágenes basadas en luz

Por el equipo editorial de LabMedica en español
Actualizado el 16 Jul 2025
Imagen: el nuevo método identifica los fenotipos de tejidos definidos por la transcriptómica espacial a más del 89 % de precisión utilizando imágenes de microscopía sin etiquetas solo (foto cortesía de T. Sawyer/Universidad de Arizona, S. Guan et al.)
Imagen: el nuevo método identifica los fenotipos de tejidos definidos por la transcriptómica espacial a más del 89 % de precisión utilizando imágenes de microscopía sin etiquetas solo (foto cortesía de T. Sawyer/Universidad de Arizona, S. Guan et al.)

La medicina de precisión, en la que las estrategias de tratamiento se adaptan a las características únicas de la enfermedad de cada paciente, es muy prometedora para la terapia oncológica. Sin embargo, la identificación de los fenotipos de la enfermedad, cruciales para elegir los tratamientos más eficaces, sigue siendo un reto importante. Los métodos actuales para identificar estos fenotipos suelen requerir pruebas costosas, como marcadores moleculares, tinciones especiales en muestras de tejido o secuenciación genética, que no siempre son accesibles para todos los pacientes. Esta falta de herramientas asequibles y eficientes limita los beneficios potenciales de la medicina de precisión para muchos. Ahora, investigadores han desarrollado un método más rápido y rentable para identificar los fenotipos de la enfermedad en el cáncer de páncreas.

El nuevo método para el fenotipado de enfermedades fue desarrollado por investigadores de la Universidad de Arizona (Tucson, AZ, EUA) utilizando microscopía óptica sin etiquetas e inteligencia artificial (IA). El equipo empleó tecnología de transcriptómica espacial para generar mapas espaciales de la expresión génica en el tejido, lo que ayudó a comprender el comportamiento de la enfermedad. Luego, los investigadores utilizaron microscopía óptica sin etiquetas para capturar imágenes basadas en la fluorescencia natural y la generación del segundo armónico, que es producida por proteínas estructurales como el colágeno. Estas imágenes se co-alinearon con datos transcriptómicos espaciales para crear una visión integral del fenotipo del tejido. Un algoritmo de IA, específicamente una red neuronal profunda, fue entrenado para predecir el fenotipo del tejido basándose únicamente en estas imágenes ópticas, lo que demuestra la viabilidad de los métodos basados en IA para el fenotipado de enfermedades.

El nuevo método fue capaz de predecir fenotipos tisulares con casi un 90 % de precisión, lo que marca un avance significativo en la aplicación de la IA a la medicina de precisión. La investigación también destacó que los métodos clásicos de análisis de imágenes eran insuficientes para predecir fenotipos, lo que subraya la importancia de los enfoques basados en IA para vincular las imágenes ópticas con los mecanismos de la enfermedad. Los hallazgos, publicados en Biophotonics Discovery, sugieren que este método podría reemplazar potencialmente las pruebas costosas y complejas con imágenes simples basadas en luz y análisis de IA. Este avance podría hacer que la medicina de precisión sea más accesible y efectiva en el futuro. Los investigadores planean continuar refinando este método y explorar sus aplicaciones más amplias en varios tipos de cáncer y otras enfermedades.

New
Miembro Oro
Immunochromatographic Assay
CRYPTO Cassette
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
Human Estradiol Assay
Human Estradiol CLIA Kit
New
Specimen Radiography System
TrueView 200 Pro

Canales

Inmunología

ver canal
Imagen: la prueba podría optimizar la toma de decisiones clínicas identificando candidatos ideales para la inmunoterapia por adelantado (Xiao, Y. et al. Cancer Biology & Medicine Julio 2025, 20250038)

Análisis sanguíneo predice eficacia de inmunoterapia en cáncer mamario triple negativo

El cáncer de mama triple negativo (CMTN) es un subtipo agresivo que carece de terapias dirigidas, lo que convierte a la inmunoterapia en una opción prometedora, aunque impredecible.... Más

Tecnología

ver canal
Imagen: el sensor puede ayudar a diagnosticar diabetes y prediabetes en el sitio en unos minutos usando solo una muestra de aliento (foto cortesía de Larry Cheng/Penn State)

Sensor de grafeno utiliza muestra de aliento para identificar diabetes y prediabetes en minutos

Aproximadamente 37 millones de adultos estadounidenses viven con diabetes, y uno de cada cinco desconoce su condición. Diagnosticar la diabetes suele requerir análisis de sangre o visitas... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.