Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros

Deascargar La Aplicación Móvil




Desarrollan hardware optimizado para microscopios para la clasificación exacta de imágenes

Por el equipo editorial de LabMedica en español
Actualizado el 11 Dec 2019
Imagen: Se ha desarrollado un tipo nuevo de microscopio que utiliza un tazón con luces LED de varios colores y esquemas de iluminación producidos por el aprendizaje automático (Fotografía cortesía de la Universidad de Duke)
Imagen: Se ha desarrollado un tipo nuevo de microscopio que utiliza un tazón con luces LED de varios colores y esquemas de iluminación producidos por el aprendizaje automático (Fotografía cortesía de la Universidad de Duke)
A pesar de la automatización generalizada habilitada por el nuevo software de posprocesamiento, el diseño físico del microscopio estándar aun ha cambiado relativamente poco, ya que, en su mayor parte, todavía es un instrumento optimizado para que un espectador humano pueda mirar e inspeccionar lo que se coloca debajo.

Se ha desarrollado un microscopio que adapta sus ángulos de iluminación, colores y patrones a la vez que se enseña la configuración óptima necesaria para completar una tarea de diagnóstico determinada. En lugar de difundir luz blanca desde abajo para iluminar uniformemente la lámina, los ingenieros desarrollaron una fuente de luz en forma de tazón con LED integrados en toda su superficie. Esto permite que las muestras se iluminen desde diferentes ángulos hasta casi 90 grados con diferentes colores, lo que esencialmente proyecta sombras y resalta diferentes características de la muestra dependiendo del patrón de los LED utilizados.

Un equipo internacional de bioingenieros que trabaja con la Universidad de Duke (Durham NC, EUA) alimentó al microscopio con cientos de muestras de glóbulos rojos infectados con malaria, preparados como frotis delgados, en los que los cuerpos celulares permanecen enteros y se extienden idealmente en una sola capa en un portaobjetos de microscopio. Usando un tipo de algoritmo de aprendizaje automático llamado red neuronal convolucional, el microscopio aprendió qué características de la muestra eran más importantes para diagnosticar la malaria y la mejor manera de resaltarlas.

El algoritmo finalmente logró un patrón LED en forma de anillo de diferentes colores provenientes de ángulos relativamente altos. Si bien las imágenes resultantes son más ruidosas que una imagen de microscopio normal, resaltan el parásito de la malaria en un punto brillante y se clasifican correctamente aproximadamente el 90% de las veces. Los médicos capacitados y otros algoritmos de aprendizaje automático generalmente funcionan con una precisión de aproximadamente el 75%. El equipo también demostró que el microscopio funciona bien con preparaciones espesas de frotis de sangre, en las que los glóbulos rojos forman un fondo altamente no uniforme y se pueden romper. Para esta preparación, el algoritmo de aprendizaje automático tuvo éxito el 99% de las veces.

Roarke Horstmeyer, PhD, profesor asistente de ingeniería biomédica y autor principal del estudio, dijo: “Un microscopio estándar ilumina una muestra con la misma cantidad de luz proveniente de todas las direcciones, y esa iluminación se ha optimizado para los ojos humanos en cientos de años. Pero las computadoras pueden ver cosas que los humanos no pueden. Por lo tanto, no solo hemos rediseñado el hardware para proporcionar una amplia gama de opciones de iluminación, sino que hemos permitido que el microscopio optimice la iluminación por sí mismo”. El estudio fue publicado en la edición de noviembre de 2019 de la revista Biomedical Optics Express.

Enlace relacionado:
Universidad de Duke

Miembro Oro
Ketosis and DKA Test
D-3-Hydroxybutyrate (Ranbut) Assay
KIT DE PRUEBA POC PARA H.PYLORI
Hepy Urease Test
Rapid Molecular Testing Device
FlashDetect Flash10
Sperm Quality Analyis Kit
QwikCheck Beads Precision and Linearity Kit

Canales

Diagnóstico Molecular

ver canal
Imagen: la prueba utiliza biomarcadores de ADNmt para detectar firmas moleculares asociadas con la endometriosis (fotografía cortesía de Shutterstock)

Análisis sanguíneo para endometriosis podría reemplazar diagnóstico laparoscópico invasivo

Se estima que la endometriosis afecta a 1 de cada 10 mujeres en todo el mundo; sin embargo, el diagnóstico puede tardar de 7 a 10 años en promedio debido a la naturaleza invasiva de la laparoscopia... Más

Hematología

ver canal
Imagen: las células leucémicas residuales pueden predecir la supervivencia a largo plazo en la leucemia mieloide aguda (fotografía cortesía de Shutterstock)

Pruebas de MRD podrían predecir supervivencia en pacientes con leucemia

La leucemia mieloide aguda es un cáncer sanguíneo agresivo que altera la producción normal de células sanguíneas y suele recaer incluso después de un tratamiento intensivo. Actualmente, los médicos carecen... Más

Patología

ver canal
Imagen: la herramienta de IA avanza en el diagnóstico de precisión al vincular las mutaciones genéticas directamente con los tipos de enfermedades (fotografía cortesía de Shutterstock)

Herramienta de IA identifica simultáneamente mutaciones genéticas y tipos de enfermedades

La interpretación de los resultados de las pruebas genéticas sigue siendo un gran desafío en la medicina moderna, especialmente en el caso de enfermedades raras y complejas.... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.