Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Please note that the LabMedica website is also available in a complete English version
Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
LGC Clinical Diagnostics

Deascargar La Aplicación Móvil




Una herramienta computacional integra datos transcriptómicos para mejorar el diagnóstico y tratamiento del cáncer de mama

Por el equipo editorial de LabMedica en español
Actualizado el 25 Jul 2024
Print article
Imagen: La herramienta puede predecir con precisión los subtipos moleculares y las respuestas a la terapia (foto cortesía de Shutterstock)
Imagen: La herramienta puede predecir con precisión los subtipos moleculares y las respuestas a la terapia (foto cortesía de Shutterstock)

El cáncer de mama es el cáncer más comúnmente diagnosticado en todo el mundo y se presenta en varios subtipos que requieren una identificación precisa para un tratamiento efectivo y personalizado. Tradicionalmente, la subtipificación del cáncer se ha realizado mediante tinción histológica (inmunohistoquímica), que implica la identificación de marcadores específicos que clasifican los tumores en distintos subtipos. Recientemente, los perfiles transcriptómicos de alto rendimiento han transformado la forma en que se identifican los subtipos de cáncer de mama mediante el análisis de la actividad genética en las células cancerosas a través de los ARN mensajeros totales presentes.

El perfil transcriptómico utiliza la secuenciación de ARN (RNAseq), una técnica de biología molecular en rápida evolución que secuencia cadenas de ARN de manera eficiente. A medida que la secuenciación de ARN se vuelve más asequible, tiene el potencial de integrarse clínicamente de forma rutinaria para ayudar en el diagnóstico y las decisiones de tratamiento. Sin embargo, su aplicación está actualmente limitada por el requisito de procesar grandes lotes de muestras simultáneamente y las dificultades para comparar muestras entre diferentes plataformas. Ahora, los científicos han desarrollado una herramienta computacional que recopila datos transcriptómicos del cáncer de mama de varias bases de datos, mejorando la oncología de precisión al predecir con precisión los subtipos moleculares y las respuestas terapéuticas.

La herramienta computacional denominada EMBER desarrollada por científicos de la EPFL (Lausana, Suiza) integra más de 11.000 transcriptomas de cáncer de mama, lo que permite la predicción de subtipos de cáncer en muestras individuales y captura vías biológicas esenciales, mejorando así la predicción de las respuestas a la terapia. EMBER utiliza un modelo estadístico que combina datos de RNA-seq y microarray de conjuntos de datos importantes como TCGA y METABRIC, centrándose en pacientes con cáncer de mama en etapas tempranas. Los datos se normalizan a una escala común, seleccionando los 1000 genes más variables y utilizando 44 genes estables para la normalización, con el fin de mantener características importantes de la expresión génica.

EMBER se validó con cohortes de pacientes independientes y se probó con datos de ensayos clínicos, como el ensayo POETIC, que identificó posibles mecanismos de resistencia a la terapia, como el aumento de la señalización del receptor de andrógenos y la disminución de la señalización del TGFβ. Identificó con precisión los cinco subtipos moleculares de cáncer de mama y vías cruciales, incluida la señalización del receptor de estrógeno y la proliferación celular. Un hallazgo notable es que la puntuación de señalización del receptor de estrógeno de EMBER supera el índice de ER basado en inmunohistoquímica utilizado en las clínicas, lo que sugiere una mayor precisión de EMBER en la predicción de respuestas a la terapia endocrina. Al ofrecer una plataforma consolidada para datos transcriptómicos del cáncer de mama, EMBER facilita una comprensión más profunda de los subtipos moleculares y las respuestas al tratamiento, lo que podría conducir a tratamientos más personalizados y mejores resultados para los pacientes con cáncer de mama ER+. EMBER también presenta un método viable para integrar la secuenciación de ARN en procedimientos de diagnóstico estándar, promoviendo diagnósticos de cáncer más completos y rentables. Este método no solo avanza la oncología de precisión, sino que también establece una base sólida para futuras investigaciones y aplicaciones clínicas.

Enlaces relacionados:
EPFL

Miembro Oro
Turnkey Packaging Solution
HLX
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
New
STI Detection Kit
CT/NG Kit
New
Neuron-Specific Enolase ELISA
Human NSE ELISA Test Kit

Print article

Canales

Química Clínica

ver canal
Imagen: La nueva prueba basada en saliva para insuficiencia cardíaca mide dos biomarcadores en aproximadamente 15 minutos (foto cortesía de Trey Pittman)

Dispositivo de pruebas de saliva predice la insuficiencia cardíaca en 15 minutos

La insuficiencia cardíaca es una enfermedad grave en la que el músculo cardíaco no puede bombear suficiente sangre rica en oxígeno a todo el cuerpo. Se considera una de las... Más

Diagnóstico Molecular

ver canal
Imagen: El ensayo de sífilis VITROS ha recibido la autorización 510(k) de la FDA (foto cortesía de QuidelOrtho)

Ensayo de sífilis mejora la eficiencia del laboratorio y reduce costos mediante la detección temprana

La prevalencia de la sífilis y otras infecciones de transmisión sexual (ITS) en los Estados Unidos ha experimentado un aumento notable, con más de 176.000 nuevos casos de sífilis... Más

Hematología

ver canal
Imagen: El nuevo sistema de puntuación predice la hiperreactividad plaquetaria y el riesgo relacionado de eventos cardiovasculares (foto cortesía de Shutterstock)

Puntuación de plaquetas sanguíneas detecta el riesgo de ataque cardíaco y accidente cerebrovascular

Las plaquetas, que son fragmentos de células que circulan en la sangre, desempeñan un papel fundamental en la formación de coágulos para detener el sangrado. Sin embargo, en... Más

Inmunología

ver canal
Imagen: La prueba de sangre mide los linfocitos para orientar el uso de la inmunoterapia contra el mieloma múltiple (cortesía de 123RF)

Una prueba de sangre simple identifica a pacientes con mieloma múltiple que podrían beneficiarse de la inmunoterapia CAR-T

El mieloma múltiple es un tipo de cáncer de sangre que se origina en las células plasmáticas de la médula ósea. Casi todos los pacientes con mieloma múltiple... Más

Microbiología

ver canal
Imagen: El sistema Accelerate WAVE proporciona AST rápidamente directamente de cultivos de sangre positivos (foto cortesía de Accelerate Diagnostics)

Sistema de diagnóstico ofrece resultados rápidos de pruebas de susceptibilidad a antibióticos

La Organización Mundial de la Salud estima que la sepsis afecta a alrededor de 49 millones de personas en todo el mundo cada año, lo que resulta en aproximadamente 11 millones de muertes,... Más

Tecnología

ver canal
Imagen: Selim Tanriverdi, un estudiante de doctorado en KTH, muestra un microchip que podría ayudar a reducir el tiempo de proceso para el análisis de sangre (Foto cortesía de David Callahan)

Nuevo método de microfluidos podría acelerar los análisis de sangre

Los investigadores han desarrollado un nuevo método para acelerar y potencialmente ampliar el proceso de separación de partículas en fluidos, una técnica que podría ser... Más

Industria

ver canal
Imagen: Se espera que el mercado global de pruebas de coagulación alcance los USD 6.5 mil millones para 2034 (foto cortesía de 123RF)

Mercado global de pruebas de coagulación impulsado por el aumento de trastornos sanguíneos e intervenciones quirúrgicas

A medida que la población mundial envejece, aumenta la demanda de pruebas de coagulación, en particular entre los ancianos, que enfrentan un mayor riesgo de eventos trombóticos y trastornos... Más
Copyright © 2000-2024 Globetech Media. All rights reserved.