Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
Werfen

Deascargar La Aplicación Móvil




Algoritmo de firma de luz permite diagnósticos médicos más rápidos y precisos

Por el equipo editorial de LabMedica en español
Actualizado el 05 May 2025
Imagen: Ziyang Wang y Shengxi Huang han desarrollado una herramienta que permite ideas precisas sobre proteínas virales y marcadores de enfermedades cerebrales (foto cortesía de Jeff Fitlow/Universidad Rice)
Imagen: Ziyang Wang y Shengxi Huang han desarrollado una herramienta que permite ideas precisas sobre proteínas virales y marcadores de enfermedades cerebrales (foto cortesía de Jeff Fitlow/Universidad Rice)

Cada material o molécula interactúa con la luz de forma única, creando un patrón distintivo, similar a una huella dactilar. La espectroscopia óptica, que consiste en aplicar un láser a un material y observar cómo interactúa la luz con él, es una técnica ampliamente utilizada en química, ciencia de materiales y medicina. Sin embargo, interpretar los datos espectrales resultantes puede ser complejo y requerir mucho tiempo, especialmente cuando las diferencias entre muestras son sutiles. Ahora,se ha desarrollado un nuevo algoritmo de aprendizaje automático (ML) capaz de interpretar eficazmente las "firmas de luz" o espectros ópticos de moléculas, materiales y biomarcadores de enfermedades, lo que ofrece la posibilidad de realizar diagnósticos médicos y análisis de muestras con mayor rapidez y precisión.

El algoritmo, conocido como Regresión Logística de Red Elástica Sensible a los Picos (PSE-LR), fue desarrollado por investigadores de la Universidad Rice (Houston, Texas, EUA) específicamente para analizar datos basados en la luz. El PSE-LR no solo es capaz de clasificar con precisión diferentes muestras, sino que también ofrece transparencia en su proceso de toma de decisiones, una característica de la que carecen muchos modelos avanzados de aprendizaje automático (ML). El algoritmo proporciona un "mapa de importancia de características" que destaca las partes específicas del espectro que contribuyeron a una decisión de clasificación particular, lo que facilita la interpretación, verificación y aplicación de los resultados. En pruebas que comparan el PSE-LR con otros modelos de ML, demostró un rendimiento superior, especialmente en la identificación de características espectrales sutiles o superpuestas.

El modelo también destacó en diversas pruebas del mundo real, como la detección de concentraciones ultrabajas de la proteína de la espícula del SARS-CoV-2 en muestras de fluidos, la identificación de soluciones neuroprotectoras en tejido cerebral de ratones, la clasificación de muestras de la enfermedad de Alzheimer y la diferenciación entre semiconductores 2D. Este nuevo algoritmo podría allanar el camino para la creación de nuevos diagnósticos, biosensores o nanodispositivos. Los espectros ópticos de tejidos u otras muestras biológicas pueden proporcionar información valiosa sobre lo que ocurre dentro del organismo. Esta capacidad es crucial, ya que una detección más rápida y precisa de enfermedades puede conducir a mejores tratamientos y potencialmente salvar vidas. Más allá de la atención médica, el método también puede ayudar a los científicos a comprender mejor los nuevos materiales, facilitando el desarrollo de biosensores más inteligentes y nanodispositivos más eficaces.

“Imaginen poder detectar los primeros signos de enfermedades como el Alzheimer o la COVID-19 con solo iluminar una gota de líquido o una muestra de tejido”, afirmó Ziyang Wang, estudiante de doctorado en ingeniería eléctrica e informática de Rice y primer autor de un estudio publicado en ACS Nano. “Nuestro trabajo lo hace posible al enseñar a las computadoras a interpretar mejor la señal de luz dispersada por moléculas diminutas”.

Miembro Oro
PIPETA HÍBRIDA
SWITCH
KIT DE PRUEBA POC PARA H.PYLORI
Hepy Urease Test
CBM Analyzer
Complete Blood Morphology (CBM) Analyzer
Miembro Oro
ENSAYO INMUNOCROMATOGRÁFICO
CRYPTO Cassette

Canales

Química Clínica

ver canal
Imagen: una técnica rápida de espectrometría de masas permite la detección de medicamentos casi en tiempo real en entornos de atención de emergencia (Boccuzzi, S. et al., Analyst 151, 741–748 (2026). DOI: 10.1039/D5AN01148E)

Método rápido de análisis sanguíneo permite decisiones más seguras en emergencias por medicamentos

La intoxicación aguda por drogas recreativas es un motivo frecuente de visitas a urgencias; sin embargo, los médicos rara vez tienen acceso a resultados toxicológicos confirmatorios... Más

Diagnóstico Molecular

ver canal
Imagen: el ensayo para estreptococo del grupo A LIAISON NES está diseñado para su uso en el sistema de diagnóstico molecular LIAISON NES POC (fotografía cortesía de Diasorin)

Prueba molecular de estreptococo A ofrece resultados definitivos en POC en 15 minutos

La faringitis estreptocócica es una infección bacteriana causada por el estreptococo del grupo A (EGA). Es una de las principales causas bacterianas de faringitis aguda, especialmente en... Más

Inmunología

ver canal
Imagen: las células tumorales circulantes aisladas de muestras de sangre podrían ayudar a guiar las decisiones sobre inmunoterapia (fotografía cortesía de Shutterstock)

Análisis de sangre identifica pacientes con cáncer pulmonar beneficiarios de fármaco de inmunoterapia

El cáncer de pulmón de células pequeñas (CPCP) es una enfermedad agresiva con opciones de tratamiento limitadas, e incluso las inmunoterapias recientemente aprobadas no benefician... Más

Microbiología

ver canal
Imagen: la tecnología basada en CRISPR elimina elementos resistentes a los antibióticos de poblaciones de bacterias (fotografía cortesía de Bier Lab/UC San Diego)

Tecnología con CRISPR neutraliza bacterias resistentes a antibióticos

La resistencia a los antibióticos se ha convertido en una crisis sanitaria mundial, con proyecciones que estiman más de 10 millones de muertes al año para 2050 a medida que las &q... Más
Copyright © 2000-2026 Globetech Media. All rights reserved.