Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros

Deascargar La Aplicación Móvil




Dispositivos de microfluidos autocalentables pueden detectar enfermedades en pequeñas muestras de sangre o fluidos

Por el equipo editorial de LabMedica en español
Actualizado el 29 Dec 2023
Imagen: Los dispositivos microfluídicos autocalentables pueden ayudar a detectar enfermedades sin equipos de laboratorio costosos (Fotografía cortesía del MIT)
Imagen: Los dispositivos microfluídicos autocalentables pueden ayudar a detectar enfermedades sin equipos de laboratorio costosos (Fotografía cortesía del MIT)

Los microfluidos, que son dispositivos en miniatura que controlan el flujo de líquidos y facilitan reacciones químicas, desempeñan un papel clave en la detección de enfermedades a partir de pequeñas muestras de sangre u otros fluidos. Los ejemplos más conocidos incluyen los kits de prueba caseros para Covid-19, que utilizan tecnología básica de microfluidos. Sin embargo, las aplicaciones de microfluidos más complejas a menudo requieren reacciones químicas a temperaturas precisas. Normalmente, estos dispositivos avanzados se producen en salas estériles e incluyen elementos calefactores fabricados con materiales caros como oro o platino, lo que hace que el proceso de fabricación sea costoso y difícil de escalar. Los investigadores ahora han logrado un gran avance al emplear la impresión 3D para construir dispositivos de microfluidos autocalentables, lo que podría allanar el camino para la creación de herramientas asequibles y eficientes que podrían detectar diversas enfermedades.

Los científicos del Instituto Tecnológico de Massachusetts (MIT, Cambridge, MA, EUA) utilizaron de manera innovadora la impresión 3D multimaterial para fabricar dispositivos de microfluidos con elementos calefactores integrados. Este desarrollo permite un control preciso de la temperatura de los fluidos que se mueven a través de los canales microscópicos del dispositivo. El método es altamente personalizable, lo que permite a los ingenieros diseñar microfluidos que calientan fluidos a temperaturas específicas o siguen patrones de calentamiento definidos en áreas designadas del dispositivo. Sorprendentemente, este método de producción rentable requiere solo unos 2 dólares en materiales por cada dispositivo de microfluidos completamente funcional.

Las dimensiones del dispositivo son comparables a las de una moneda de veinticinco centavos de EUA y su producción es rápida, sólo lleva unos minutos. Este avance es particularmente significativo para áreas remotas o de escasos recursos en los países en desarrollo, donde el acceso a costosos equipos de laboratorio para pruebas de diagnóstico a menudo es limitado. De cara al futuro, los investigadores pretenden incorporar imanes directamente en los dispositivos de microfluidos. Estos imanes integrados podrían facilitar reacciones químicas que requieren la clasificación o alineación de partículas. Los investigadores también están investigando materiales alternativos capaces de alcanzar temperaturas más altas. Esta innovación en tecnología de microfluidos representa un paso significativo hacia herramientas de diagnóstico más accesibles y eficientes, especialmente en áreas con recursos limitados.

"Las salas estériles en particular, donde normalmente se fabrican estos dispositivos, son increíblemente costosas de construir y operar", dijo Luis Fernando Velásquez-García, científico principal de los Laboratorios de Tecnología de Microsistemas (MTL) del MIT. “Pero podemos fabricar dispositivos de microfluidos autocalentables muy capaces mediante la fabricación aditiva, y se pueden fabricar mucho más rápido y más barato que con estos métodos tradicionales. Esta es realmente una forma de democratizar esta tecnología”.

Enlaces relacionados:
MIT

Miembro Oro
Blood Gas Analyzer
Stat Profile pHOx
KIT DE PRUEBA POC PARA H.PYLORI
Hepy Urease Test
8-Channel Pipette
SAPPHIRE 20–300 µL
Laboratory Software
ArtelWare

Canales

Diagnóstico Molecular

ver canal
Imagen: el dispositivo de diagnóstico puede indicar cómo responden los tumores cerebrales mortales al tratamiento con un simple análisis de sangre (fotografía cortesía de UQ)

Dispositivo de diagnóstico predice respuesta al tratamiento de tumores cerebrales mediante análisis sanguíneo

El glioblastoma es uno de los tipos más mortales de cáncer cerebral, en gran parte porque los médicos no cuentan con un método fiable para determinar la eficacia de los tratamientos... Más

Inmunología

ver canal
Imagen: las células tumorales circulantes aisladas de muestras de sangre podrían ayudar a guiar las decisiones sobre inmunoterapia (fotografía cortesía de Shutterstock)

Análisis de sangre identifica pacientes con cáncer pulmonar beneficiarios de fármaco de inmunoterapia

El cáncer de pulmón de células pequeñas (CPCP) es una enfermedad agresiva con opciones de tratamiento limitadas, e incluso las inmunoterapias recientemente aprobadas no benefician... Más

Microbiología

ver canal
Imagen: nueva evidencia sugiere que los desequilibrios en el microbioma intestinal pueden contribuir a la aparición y progresión del deterioro cognitivo leve y la enfermedad de Alzheimer (fotografía cortesía de Adobe Stock)

Nuevo estudio identifica características del microbioma intestinal asociadas con enfermedad de Alzheimer

La enfermedad de Alzheimer afecta a aproximadamente 6,7 millones de personas en Estados Unidos y a casi 50 millones en todo el mundo; sin embargo, el deterioro cognitivo temprano sigue siendo difícil de... Más
Copyright © 2000-2026 Globetech Media. All rights reserved.