Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
INTEGRA BIOSCIENCES AG

Deascargar La Aplicación Móvil





Investigadores de Yale utilizan el análisis de células individuales y el aprendizaje automático para identificar un objetivo importante de la COVID-19

Por el equipo editorial de LabMedica en español
Actualizado el 31 May 2020
Imagen: El epitelio respiratorio (Fotografía cortesía de Wikimedia Commons)
Imagen: El epitelio respiratorio (Fotografía cortesía de Wikimedia Commons)
Los científicos de la Facultad de Medicina de Yale (Nueva Haven, CT, EUA) utilizan la secuenciación de ARN unicelular de las células epiteliales bronquiales humanas (HBEC) infectadas para aprender cómo el SARS-CoV-2 infecta y altera las células sanas.

En el estudio, los científicos identificaron las células ciliadas como el objetivo principal de la infección por el SARS-CoV-2. El epitelio bronquial actúa como una barrera protectora contra alérgenos y patógenos. Los cilios eliminan el moco y otras partículas del tracto respiratorio. Sus hallazgos ofrecen una idea de cómo el virus causa la enfermedad. Los científicos infectaron HBEC en una interfaz aire-líquido con SARS-CoV-2. Durante un período de tres días, utilizaron la secuenciación de ARN de una sola célula para identificar las firmas de la dinámica de la infección, como el número de células infectadas en todos los tipos de células y si el SARS-CoV-2 activó una respuesta inmune en las células infectadas.

Los científicos utilizaron algoritmos avanzados para desarrollar hipótesis de trabajo y utilizaron la microscopía electrónica para aprender sobre la base estructural del virus y las células objetivo. Estas observaciones proporcionan información sobre la interacción virus-huésped para medir el tropismo celular del SARS-CoV-2 o la capacidad del virus para infectar diferentes tipos de células, según lo identificado por los algoritmos. Después de tres días, miles de células cultivadas se infectaron. Los científicos analizaron los datos de las células infectadas junto con los de las células vecinas. Observaron que las células ciliadas eran el 83% de las células infectadas. Estas células fueron la fuente primera y principal de infección durante todo el estudio. El virus también se dirigió a otros tipos de células epiteliales, incluidas las células basales y las células club. Las células caliciformes, neuroendocrinas, células tufo e ionocitos tenían menos probabilidades de infectarse.

Las firmas de genes revelaron una respuesta inmune innata asociada con una proteína llamada interleuquina 6 (IL-6). El análisis también mostró un cambio en las transcripciones virales poliadeniladas. Por último, las células espectadoras (no infectadas) también mostraron una respuesta inmune, probablemente debido a las señales de las células infectadas. Extrayendo información de decenas de miles de genes, los algoritmos localizan las diferencias genéticas entre las células infectadas y no infectadas. En la siguiente fase de este estudio, los científicos examinarán la gravedad del SARS-CoV-2 en comparación con otros tipos de coronavirus y realizarán pruebas en modelos animales.

“El aprendizaje automático nos permite generar hipótesis. Es una forma diferente de hacer ciencia. Entramos con la menor cantidad de hipótesis posibles. Medimos todo lo que podamos medir, y los algoritmos nos presentan la hipótesis”, dijo el autor principal, David van Dijk, PhD, profesor asistente de medicina en la Sección de Medicina Cardiovascular y Ciencias de la Computación.

Enlace relacionado:
Facultad de Medicina de Yale

New
Miembro Oro
Automatic CLIA Analyzer
Shine i9000
Portable Electronic Pipette
Mini 96
6 Part Hematology Analyzer with RET + IPF
Mispa HX 88
New
Miembro Oro
Ketosis and DKA Test
D-3-Hydroxybutyrate (Ranbut) Assay

Canales

Diagnóstico Molecular

ver canal
Imagen: evaluación del tamaño de material obtenido de pacientes de diversas tauopatías (Aragonès Pedrola J. et al., PNAS (2025); DOI: 10.1073/pnas.2502847122)

Primera medición directa de proteínas relacionadas con demencia permiten detección temprana del Alzheimer

El proceso de la enfermedad de Alzheimer comienza mucho antes de que se manifiesten la pérdida de memoria o el deterioro cognitivo. Durante esta fase silenciosa, las proteínas mal plegadas... Más

Hematología

ver canal
Imagen: un esquema que ilustra la cascada de coagulación in vitro (fotografía cortesía de Harris, N., 2024)

Nueva guía de ADLM sobre pruebas de coagulación mejora atención a pacientes que toman anticoagulantes

Los anticoagulantes orales directos (ACOD) son uno de los tipos más comunes de anticoagulantes. Los pacientes los toman para prevenir diversas complicaciones derivadas de la coagulación ... Más

Microbiología

ver canal
Imagen: el EBP y EBP plus han recibido la autorización 510(k) de la FDA y la certificación CE-IVDR para su uso en el sistema BD COR (fotografía cortesía de BD)

Paneles entéricos de alto rendimiento detectan múltiples infecciones bacterianas gastrointestinales

Las infecciones gastrointestinales (GI) se encuentran entre las causas más comunes de enfermedad a nivel mundial, provocando más de 1,7 millones de muertes anuales y suponiendo una gran carga para los... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.