Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros

Deascargar La Aplicación Móvil




Eventos

02 jun 2026 - 04 jun 2026
17 jun 2026 - 19 jun 2026

Herramienta de aprendizaje automático da una alerta temprana de problemas cardíacos o coágulos sanguíneos en los pacientes con COVID-19

Por el equipo editorial de LabMedica en español
Actualizado el 18 Jan 2021
Ilustración
Ilustración
Un equipo de ingenieros biomédicos y especialistas en cardiología desarrolló un algoritmo que advierte a los médicos varias horas antes de que los pacientes hospitalizados con COVID-19 experimenten un paro cardíaco o coágulos de sangre.

El predictor COVID-HEART desarrollado utilizando datos de pacientes tratados para COVID-19 por científicos de la Universidad Johns Hopkins (JHU; Baltimore, MD, EUA), puede pronosticar un paro cardíaco en pacientes con COVID-19 con una mediana de tiempo de alerta temprana de 18 horas y predecir los coágulos de sangre con tres días de anticipación. El algoritmo de aprendizaje automático se creó con más de 100 puntos de datos clínicos, información demográfica y resultados de laboratorio obtenidos del registro JH-CROWN que Johns Hopkins estableció para recopilar los datos COVID de cada paciente en el sistema hospitalario. Los científicos también agregaron otras variables informadas por los médicos en Twitter y provenientes de otros artículos preimpresos.

El equipo no anticipó que los datos del electrocardiograma jugarían un papel crítico en la predicción de la coagulación sanguínea. Pero una vez que se agregaron, los datos de ECG se convirtieron en uno de los indicadores más exactos para la afección. El siguiente paso para los investigadores es desarrollar el mejor método para configurar la tecnología en los hospitales con el fin de ayudar con la atención de los pacientes con COVID-19.

“Es un sistema de alerta temprana para predecir en tiempo real estos dos resultados en pacientes hospitalizados con COVID-19”, dijo la autora principal, Natalia Trayanova, profesora Murray B. Sachs de Ingeniería Biomédica y una profesora de medicina. “El predictor que se actualiza continuamente puede ayudar a los hospitales a asignar los recursos y las intervenciones adecuadas para lograr los mejores resultados para los pacientes”.

“La herramienta de predicción COVID-HEART podría ayudar en la clasificación rápida de pacientes con COVID-19 en el entorno clínico, especialmente cuando los recursos son limitados”, dijo Allison Hays, profesora asociada de medicina en la Facultad de Medicina de la Universidad Johns Hopkins y la colaboradora clínica principal del proyecto. “Esto puede tener implicaciones para el tratamiento y un seguimiento más estrecho de los pacientes con Covid-19 para ayudar a prevenir estos malos resultados”.

Enlace relacionado:
Universidad Johns Hopkins

Miembro Oro
Fibrinolysis Assay
HemosIL Fibrinolysis Assay Panel
KIT DE PRUEBA POC PARA H.PYLORI
Hepy Urease Test
Pipette
Accumax Smart Series
Sperm Quality Analyis Kit
QwikCheck Beads Precision and Linearity Kit

Canales

Diagnóstico Molecular

ver canal
Imagen: el método de biopsia líquida mide la aleatoriedad en los patrones de metilación del ADN para detectar señales de cáncer en etapa temprana en la sangre (fotografía cortesía de 123RF)

Análisis sanguíneo detecta cánceres en etapa temprana midiendo inestabilidad epigenética

Los cánceres en etapa temprana son notoriamente difíciles de detectar debido a que los cambios moleculares son sutiles y a menudo pasan desapercibidos para las herramientas de detección... Más

Inmunología

ver canal
Imagen: las células tumorales circulantes aisladas de muestras de sangre podrían ayudar a guiar las decisiones sobre inmunoterapia (fotografía cortesía de Shutterstock)

Análisis de sangre identifica pacientes con cáncer pulmonar beneficiarios de fármaco de inmunoterapia

El cáncer de pulmón de células pequeñas (CPCP) es una enfermedad agresiva con opciones de tratamiento limitadas, e incluso las inmunoterapias recientemente aprobadas no benefician... Más

Microbiología

ver canal
Imagen: nueva evidencia sugiere que los desequilibrios en el microbioma intestinal pueden contribuir a la aparición y progresión del deterioro cognitivo leve y la enfermedad de Alzheimer (fotografía cortesía de Adobe Stock)

Nuevo estudio identifica características del microbioma intestinal asociadas con enfermedad de Alzheimer

La enfermedad de Alzheimer afecta a aproximadamente 6,7 millones de personas en Estados Unidos y a casi 50 millones en todo el mundo; sin embargo, el deterioro cognitivo temprano sigue siendo difícil de... Más
Copyright © 2000-2026 Globetech Media. All rights reserved.