Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros

Deascargar La Aplicación Móvil




Eventos

02 jun 2026 - 04 jun 2026
17 jun 2026 - 19 jun 2026

Modelo de IA para la detección precoz del SARS-CoV-2 en niños podría allanar el camino para un dispositivo diagnóstico de cabecera para la COVID-19

Por el equipo editorial de LabMedica en español
Actualizado el 08 Feb 2021
Ilustración
Ilustración
Se espera que un modelo de inteligencia artificial (IA) para ayudar en la detección temprana de la enfermedad grave del SARS-CoV2 en los niños, mejore los resultados a través del reconocimiento temprano, la intervención oportuna y la asignación adecuada de recursos críticos, además de conducir al desarrollo de un dispositivo de diagnóstico rápido de cabecera para la COVID-19.

Para evitar que los niños se enfermen críticamente a causa del SARS-CoV-2, un equipo de investigadores de la Universidad Estatal de Wayne (Detroit, MI, EUA), trabajó en la definición y la comparación de la respuesta del huésped molecular en saliva en niños con fenotipos variables de SARS-CoV- 2 con el fin de desarrollar y validar un modelo sensible y específico para predecir la enfermedad grave del SARS-CoV-2 en los niños. Los investigadores han trabajado en el desarrollo de un dispositivo portátil y rápido que cuantifique los miARN salivales con una exactitud comparable a la tecnología de predicados (qRT-PCR). El equipo desarrollará un sistema móvil y en la nube asistido por IA para el reconocimiento temprano de la infección grave por SARS-CoV-2 en niños.

Actualmente, no existen métodos para discernir el espectro de la gravedad de la enfermedad y predecir qué niños con exposición al SARS-CoV-2 desarrollarán una enfermedad grave, incluido el síndrome inflamatorio multisistémico (SIM-C). Debido a esto, existe una necesidad urgente de desarrollar una modalidad de diagnóstico para poder diferenciar los diferentes fenotipos de enfermedad y estratificar el riesgo. El equipo de investigación tiene como objetivo desarrollar un modelo de IA, innovador y eficiente, con biomarcadores no invasivos de integración de inteligencia en la nube y en el borde con determinantes sociales de la salud y datos clínicos para ayudar con la detección temprana de la enfermedad grave del SARS-CoV-2 en los niños.

“Nuestra investigación es fundamental, ya que esperamos mejorar los resultados de los niños con infección grave por SARS-CoV-2 mediante el reconocimiento temprano, la intervención oportuna y la asignación adecuada de recursos críticos”, dijo Dongxiao Zhu, Ph.D., profesor asociado de informática en la Facultad de Ingeniería y director del estudio. “La finalización con éxito del proyecto también será importante, ya que conducirá al desarrollo de un dispositivo de diagnóstico rápido de cabecera y la creación de perfiles de pacientes basados en factores de riesgo individuales que esperamos que conduzcan a tratamientos personalizados en el futuro”.

Enlace relacionado:
Universidad Estatal de Wayne

Miembro Oro
PRUEBA DE VIRUS SINCITIAL RESPIRATORIO
OSOM® RSV Test
KIT DE PRUEBA POC PARA H.PYLORI
Hepy Urease Test
Automated MALDI-TOF MS System
EXS 3000
Gel Cards
DG Gel Cards

Canales

Diagnóstico Molecular

ver canal
Imagen: el método de biopsia líquida mide la aleatoriedad en los patrones de metilación del ADN para detectar señales de cáncer en etapa temprana en la sangre (fotografía cortesía de 123RF)

Análisis sanguíneo detecta cánceres en etapa temprana midiendo inestabilidad epigenética

Los cánceres en etapa temprana son notoriamente difíciles de detectar debido a que los cambios moleculares son sutiles y a menudo pasan desapercibidos para las herramientas de detección... Más

Inmunología

ver canal
Imagen: las células tumorales circulantes aisladas de muestras de sangre podrían ayudar a guiar las decisiones sobre inmunoterapia (fotografía cortesía de Shutterstock)

Análisis de sangre identifica pacientes con cáncer pulmonar beneficiarios de fármaco de inmunoterapia

El cáncer de pulmón de células pequeñas (CPCP) es una enfermedad agresiva con opciones de tratamiento limitadas, e incluso las inmunoterapias recientemente aprobadas no benefician... Más

Microbiología

ver canal
Imagen: nueva evidencia sugiere que los desequilibrios en el microbioma intestinal pueden contribuir a la aparición y progresión del deterioro cognitivo leve y la enfermedad de Alzheimer (fotografía cortesía de Adobe Stock)

Nuevo estudio identifica características del microbioma intestinal asociadas con enfermedad de Alzheimer

La enfermedad de Alzheimer afecta a aproximadamente 6,7 millones de personas en Estados Unidos y a casi 50 millones en todo el mundo; sin embargo, el deterioro cognitivo temprano sigue siendo difícil de... Más
Copyright © 2000-2026 Globetech Media. All rights reserved.