Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros

Deascargar La Aplicación Móvil




Eventos

02 jun 2026 - 04 jun 2026
17 jun 2026 - 19 jun 2026

Los rayos X combinados con la inteligencia artificial ofrecen una herramienta de diagnóstico rápido para detectar COVID-19

Por el equipo editorial de LabMedica en español
Actualizado el 01 Apr 2021
Ilustración
Ilustración
Los rayos-x podrían ser una herramienta de diagnóstico de vanguardia para pacientes con COVID-19 con la ayuda de inteligencia artificial (IA), según investigadores que enseñaron un programa de computadora, a través de varios métodos de aprendizaje automático, para detectar COVID-19 en rayos-x de tórax con una precisión de 95,6 a 98,5%.
Los hallazgos fueron hechos por investigadores de la Universidad de Fortaleza (Fortaleza - CE, Brasil), que anteriormente se enfocaban en detectar y clasificar patologías pulmonares, como fibrosis, enfisema y nódulos pulmonares, por medio de la imagenología. Los síntomas comunes sospechosos de infecciones de COVID-19 incluyen dificultad respiratoria, tos y en casos más agresivos, neumonía, todos visibles por medio de imagenología como exploraciones TC o rayos-x. Muchas instituciones médicas tienen tanto un número inadecuado de pruebas como tiempos largos de procesamiento, por lo tanto, el equipo de investigación se centró en mejorar una herramienta que está fácilmente disponible en cada hospital y que ya es usada con frecuencia en diagnosticar el COVID-19: los dispositivos de rayos-x. Además, las imágenes de rayos-x están disponibles en minutos, en comparación con los días requeridos por las pruebas diagnósticas de hisopado o saliva.
Sin embargo, los investigadores encontraron una falta de rayos-x disponible públicamente para entrenar su modelo IA para identificar automáticamente los pulmones de los pacientes con COVID-19. Tenían solo 194 rayos-x de COVID-19 y 194 rayos-x de personas sanas, mientras que generalmente toma miles de imágenes enseñar a fondo un modelo para detectar y clasificar un objetivo en particular. Para compensar, tomaron un modelo entrenado en una gran base de datos de otras imágenes de rayos-x y lo entrenaron para usar los mismos métodos para detectar los pulmones probablemente infectados con COVID-19. Utilizaron varios métodos de aprendizaje automáticos diferentes, dos de los cuales resultaron en una calificación de precisión de 95,6% y 98,5%, respectivamente. Los investigadores ahora planean continuar probando su método con bases de datos más grandes a medida que estén disponibles, con la meta final de desarrollar una plataforma en-línea gratuita para la clasificación de las imágenes médicas.
"Dado que los rayos-x son muy rápidos y económicos, pueden ayudar a clasificar a los pacientes en lugares donde el sistema de salud ha colapsado o en lugares que estén muy lejos de los centros médicos principales con acceso a tecnologías más complejas", dijo el autor corresponsal Victor Hugo C. de Albuquerque, un investigador en el Laboratorio de Procesamiento de Imágenes, Señales y Computación Aplicada y con la Universidad de Fortaleza. "Este enfoque para detectar y clasificar las imágenes médicas automáticamente, puede ayudar a los médicos en identificar, medir la severidad y clasificar la enfermedad".

Enlace relacionado:
Universidad de Fortaleza

Miembro Oro
PRUEBA DE VIRUS SINCITIAL RESPIRATORIO
OSOM® RSV Test
KIT DE PRUEBA POC PARA H.PYLORI
Hepy Urease Test
Miembro Oro
SISTEMA DE RECOLECCIÓN Y TRANSPORTE
PurSafe Plus®
Automated Chemiluminescence Immunoassay Analyzer
MS-i3080

Canales

Diagnóstico Molecular

ver canal
Imagen: el método de biopsia líquida mide la aleatoriedad en los patrones de metilación del ADN para detectar señales de cáncer en etapa temprana en la sangre (fotografía cortesía de 123RF)

Análisis sanguíneo detecta cánceres en etapa temprana midiendo inestabilidad epigenética

Los cánceres en etapa temprana son notoriamente difíciles de detectar debido a que los cambios moleculares son sutiles y a menudo pasan desapercibidos para las herramientas de detección... Más

Inmunología

ver canal
Imagen: las células tumorales circulantes aisladas de muestras de sangre podrían ayudar a guiar las decisiones sobre inmunoterapia (fotografía cortesía de Shutterstock)

Análisis de sangre identifica pacientes con cáncer pulmonar beneficiarios de fármaco de inmunoterapia

El cáncer de pulmón de células pequeñas (CPCP) es una enfermedad agresiva con opciones de tratamiento limitadas, e incluso las inmunoterapias recientemente aprobadas no benefician... Más

Microbiología

ver canal
Imagen: nueva evidencia sugiere que los desequilibrios en el microbioma intestinal pueden contribuir a la aparición y progresión del deterioro cognitivo leve y la enfermedad de Alzheimer (fotografía cortesía de Adobe Stock)

Nuevo estudio identifica características del microbioma intestinal asociadas con enfermedad de Alzheimer

La enfermedad de Alzheimer afecta a aproximadamente 6,7 millones de personas en Estados Unidos y a casi 50 millones en todo el mundo; sin embargo, el deterioro cognitivo temprano sigue siendo difícil de... Más
Copyright © 2000-2026 Globetech Media. All rights reserved.