Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
Werfen

Illumina

Illumina develops, manufactures and markets integrated systems for the analysis of genetic variations and biological ... más Productos destacados: More products

Deascargar La Aplicación Móvil




Epigenómica leucocitaria y la inteligencia artificial predicen la enfermedad de Alzheimer de inicio tardío

Por el equipo editorial de LabMedica en español
Actualizado el 06 Jun 2021
Imagen: el kit EZ DNA Methylation-Direct (Fotografía cortesía de Zymo Research)
Imagen: el kit EZ DNA Methylation-Direct (Fotografía cortesía de Zymo Research)
La enfermedad de Alzheimer (EA) es la forma más común de demencia relacionada con la edad y representa del 60% al 80% de estos casos. El trastorno causa una amplia gama de discapacidades físicas y mentales importantes, con profundos cambios de comportamiento y deterioro progresivo de las habilidades sociales.

La EA es un trastorno complejo influenciado por factores ambientales y genéticos. Los estudios de asociación de todo el genoma (GWAS) han identificado varios loci de riesgo asociados a la EA de inicio tardío (LOAD) en los leucocitos de sangre periférica, incluidos linfocitos T, linfocitos B, leucocitos polimorfonucleares, monocitos y macrófagos.

Un equipo de científicos médicos principalmente de la Facultad de Medicina William Beaumont de la Universidad de Oakland (Royal Oak, MI, EUA), evaluó la utilidad de los biomarcadores epigenómicos de leucocitos para la detección de la enfermedad de Alzheimer (EA) y dilucidó sus patogénesis moleculares. El equipo estudió muestras de sangre de dos docenas de pacientes con enfermedad de Alzheimer y la misma cantidad de controles de salud cognitiva.

Se extrajeron aproximadamente 500 ng de ADN genómico de cada una de las 48 muestras, que posteriormente se convirtieron con bisulfito utilizando el kit EZ DNA Methylation-Direct (Zymo Research, Orange, CA, EUA). Realizaron un análisis de metilación del ADN de todo el genoma de las muestras de sangre con la matriz Infinium MethylationEPIC BeadChip (Illumina, San Diego, CA, EUA). El análisis de inteligencia artificial (IA) se realizó a través de una combinación de sitios CpG de diferentes genes. También utilizaron seis enfoques de inteligencias artificiales para analizar su conjunto de datos, incluida la máquina de vectores de soporte, el bosque aleatorio y el aprendizaje profundo. El aprendizaje profundo es una rama del aprendizaje automático que tiene como objetivo imitar las redes neuronales de los cerebros de los animales.

El equipo informó que cada uno de los enfoques de IA podía predecir la enfermedad de Alzheimer con alta precisión, produciendo áreas bajo la curva (AUC) de al menos 0,93. El aprendizaje profundo mejoró aún más eso con una AUC de 0,99 y una sensibilidad y especificidad del 97% utilizando marcadores intragénicos. También se podrían alcanzar resultados similares con marcadores intergénicos. El grupo señaló que la adición de predictores clínicos convencionales o análisis del estado mental no mejoró aún más el desempeño. El análisis destacó una serie de genes y vías que se sabe que se interrumpen en la enfermedad de Alzheimer. Los genes alterados epigenéticamente incluyen, por ejemplo, CR1L y CTSV, que están implicados en la morfología de la corteza cerebral, así como S1PR1 y LTB4R, implicados en la respuesta inflamatoria.

Ray O. Bahado-Singh, MD, profesor de obstetricia y ginecología y autor principal del estudio, dijo: “Descubrimos que el análisis genético predijo con exactitud la ausencia o presencia de la enfermedad de Alzheimer, lo que nos permitió leer lo que sucede en el cerebro a través de la sangre. Los resultados también nos dieron una lectura de las anomalías que causan la enfermedad de Alzheimer. Esto tiene una promesa futura para el desarrollo de un tratamiento específico para interrumpir el proceso de la enfermedad”. El estudio fue publicado el 31 de marzo de 2021 en la revista PLOS ONE.

Enlace relacionado:
Facultad de Medicina William Beaumont de la Universidad de Oakland
Zymo Research

New
Miembro Oro
Clinical Drug Testing Panel
DOA Urine MultiPlex
KIT DE PRUEBA POC PARA H.PYLORI
Hepy Urease Test
Automatic CLIA Analyzer
Shine i9000
CONTROL QUÍMICO DE LA ORINA
Dropper Urine Chemistry Control

Canales

Química Clínica

ver canal
Imagen: una técnica rápida de espectrometría de masas permite la detección de medicamentos casi en tiempo real en entornos de atención de emergencia (Boccuzzi, S. et al., Analyst 151, 741–748 (2026). DOI: 10.1039/D5AN01148E)

Método rápido de análisis sanguíneo permite decisiones más seguras en emergencias por medicamentos

La intoxicación aguda por drogas recreativas es un motivo frecuente de visitas a urgencias; sin embargo, los médicos rara vez tienen acceso a resultados toxicológicos confirmatorios... Más

Inmunología

ver canal
Imagen: las células tumorales circulantes aisladas de muestras de sangre podrían ayudar a guiar las decisiones sobre inmunoterapia (fotografía cortesía de Shutterstock)

Análisis de sangre identifica pacientes con cáncer pulmonar beneficiarios de fármaco de inmunoterapia

El cáncer de pulmón de células pequeñas (CPCP) es una enfermedad agresiva con opciones de tratamiento limitadas, e incluso las inmunoterapias recientemente aprobadas no benefician... Más

Microbiología

ver canal
Imagen: la tecnología basada en CRISPR elimina elementos resistentes a los antibióticos de poblaciones de bacterias (fotografía cortesía de Bier Lab/UC San Diego)

Tecnología con CRISPR neutraliza bacterias resistentes a antibióticos

La resistencia a los antibióticos se ha convertido en una crisis sanitaria mundial, con proyecciones que estiman más de 10 millones de muertes al año para 2050 a medida que las &q... Más
Copyright © 2000-2026 Globetech Media. All rights reserved.