Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros

Deascargar La Aplicación Móvil




Inteligencia artificial mejora diagnóstico de cáncer de mama

Por el equipo editorial de LabMedica en español
Actualizado el 05 Jan 2018
Un estudio que comparó la capacidad de los algoritmos de Inteligencia Artificial (AI) con la de patólogos expertos para la detección de cáncer de mama metastásico mediante el estudio de imágenes de láminas completas encontró que el aprendizaje automático era mejor que los patólogos. Los resultados del estudio publicado en la revista Journal of the American Medical Association, sugieren que los algoritmos de aprendizaje profundo tienen la capacidad de mejorar el diagnóstico y se podrían usar para ayudar a los médicos a detectar el cáncer en la clínica.
 
El estudio enfrentó a 11 patólogos con limitaciones de tiempo y a un patólogo sin restricciones de tiempo frente a siete algoritmos de aprendizaje profundo para analizar un conjunto de datos de entrenamiento de imágenes de láminas completas: 110 con y 160 sin metástasis ganglionares verificadas. De las 49 láminas para análisis con enfermedad metastásica, los patólogos encontraron 31 en promedio, mientras que el patólogo que pudo trabajar sin restricción de tiempo identificó correctamente 46 de 49 láminas con cáncer y 79 de 80 diapositivas sin cáncer.
 
Entre los siete algoritmos de aprendizaje profundo, el mejor algoritmo tuvo un desempeño significativamente mejor en la tarea de clasificación de imágenes de láminas completas, en comparación con los patólogos que trabajaron con limitaciones de tiempo. El desempeño medio de los cinco algoritmos principales fue comparable con el del patólogo único que pudo trabajar sin restricciones de tiempo. Sin embargo, a un promedio de 0,0125 falsos positivos por imagen de lámina normal completa, el desempeño del algoritmo de mejor rendimiento fue comparable con el del patólogo único que pudo trabajar sin restricción de tiempo.
 
La investigación fue dirigida por Babak Ehteshami Bejnordi del Centro Médico de la Universidad de Radboud de Nijmegen en los Países Bajos. Los investigadores concluyeron que, si bien los hallazgos sugerían la utilidad potencial de los algoritmos de aprendizaje profundo para el diagnóstico patológico, requería una evaluación adicional en un entorno clínico.
 
Miembro Oro
Quality Control Material
iPLEX Pro Exome QC Panel
KIT DE PRUEBA POC PARA H.PYLORI
Hepy Urease Test
Human Estradiol Assay
Human Estradiol CLIA Kit
Laboratory Software
ArtelWare

Canales

Diagnóstico Molecular

ver canal
Imagen: el análisis de sangre del ADN tumoral circulante podría proporcionar una advertencia más temprana sobre la recurrencia posterior al trasplante (fotografía cortesía de Shutterstock)

Análisis sanguíneo podría permitir detección temprana de recurrencia del cáncer de hígado después del trasplante

El cáncer de hígado es una de las principales causas de muerte por cáncer en todo el mundo, con más de 800.000 diagnósticos y más de 700.000 muertes al año.... Más

Inmunología

ver canal
Imagen: las células tumorales circulantes aisladas de muestras de sangre podrían ayudar a guiar las decisiones sobre inmunoterapia (fotografía cortesía de Shutterstock)

Análisis de sangre identifica pacientes con cáncer pulmonar beneficiarios de fármaco de inmunoterapia

El cáncer de pulmón de células pequeñas (CPCP) es una enfermedad agresiva con opciones de tratamiento limitadas, e incluso las inmunoterapias recientemente aprobadas no benefician... Más

Microbiología

ver canal
Imagen: la plataforma de diagnóstico de precisión dSHERLOCK permite la evaluación cuantitativa de infecciones por hongos en 20 minutos (fotografía cortesía del Instituto Wyss de la Universidad de Harvard)

Plataforma de IA permite detección rápida de patógenos de C. auris resistentes a fármacos

Las infecciones causadas por la levadura patógena Candida auris representan una amenaza significativa para los pacientes hospitalizados, en particular para aquellos con sistemas inmunitarios debilitados... Más
Copyright © 2000-2026 Globetech Media. All rights reserved.