Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
LGC Clinical Diagnostics

BECKMAN COULTER, INC.

Beckman Coulter develops, manufactures and markets laboratory systems, reagents, centrifugation, lab automation, elec... más Productos destacados: More products

Deascargar La Aplicación Móvil




Identifican el cáncer de próstata mediante el análisis de los subconjuntos de células inmunes

Por el equipo editorial de LabMedica en español
Actualizado el 18 Aug 2020
Print article
Imagen: El citómetro de flujo, Gallios de 10 colores/3 láseres (Fotografía cortesía de Beckman Coulter).
Imagen: El citómetro de flujo, Gallios de 10 colores/3 láseres (Fotografía cortesía de Beckman Coulter).
Con un estimado de 1,8 millones de casos nuevos, solo en 2018, el cáncer de próstata es el cuarto cáncer más común en el mundo. El diagnóstico temprano de la enfermedad aumenta las posibilidades de supervivencia, pero este cáncer sigue siendo difícil de detectar.

La mejor prueba de diagnóstico actualmente disponible mide el nivel en sangre de una proteína llamada antígeno prostático específico (PSA, por sus siglas en inglés). Las cantidades elevadas de PSA pueden significar que el paciente tiene cáncer, pero el 15% de las personas con cáncer de próstata tienen niveles normales de la proteína.

Un equipo de científicos de la Universidad de Nottingham Trent (Nottingham, Reino Unido) y sus colegas, obtuvieron muestras de sangre periférica de individuos sospechosos de tener cáncer de próstata que asistieron a la Clínica de Urología del Hospital General de Leicester (Leicester, Reino Unido), entre el 24 de octubre de 2012 y el 15 de agosto de 2014. Se extrajo sangre periférica (60 mL) de todos los pacientes mediante procedimientos clínicos estándar y se extrajo la fracción de células mononucleares de sangre periférica (PBMC). Las PBMC se procesaron e incubaron con un panel de anticuerpos monoclonales (mAb). Los datos sobre las células viables se obtuvieron en un plazo de 1 hora usando un citómetro de flujo de 10 colores/3 láser Gallios (Beckman Coulter, Indianápolis, IN, EUA).

El equipo recolectó y examinó las células asesinas naturales (natural killer) de 72 participantes con niveles de PSA ligeramente elevados y sin otros síntomas. Entre ellos, 31 personas tenían cáncer de próstata y 41 estaban sanas. Estos datos biológicos se utilizaron luego para producir modelos informáticos que pudieran detectar la presencia de la enfermedad, así como para evaluar su gravedad. Los algoritmos se desarrollaron mediante el aprendizaje automático, donde se utiliza la información previa del paciente para realizar predicciones sobre nuevos datos.

Los métodos estadísticos y computacionales identificaron un panel de ocho características fenotípicas (CD56dimCD16high, CD56+ DNAM−1−, CD56+ LAIR−1+, CD56+ LAIR−1−, CD56brightCD8+, CD56+NKp30+, CD56+NKp30+, CD56+NKp46+) que, cuando se incorporan a un modelo de predicción de aprendizaje automático, Ensemble, diferencia entre la presencia de enfermedad de próstata benigna y el cáncer de próstata. Luego, el modelo de aprendizaje automático se adaptó para predecir la Clasificación de riesgo de D'Amico utilizando datos de 54 pacientes con cáncer de próstata y se demostró que diferenciaba con exactitud entre la presencia de enfermedad de riesgo bajo/intermedio y la enfermedad de alto riesgo, sin la necesidad de datos clínicos adicionales.

Los autores concluyeron que su estudio dio como resultado una nueva herramienta de detección que era un 12,5% más exacta que la prueba de PSA, para detectar el cáncer de próstata; y en una herramienta de detección con una exactitud del 99% para predecir el riesgo de la enfermedad (en términos de importancia clínica) en personas con cáncer de próstata. Este simple análisis de sangre tiene el potencial de transformar el diagnóstico del cáncer de próstata. El estudio fue publicado el 28 de julio de 2020 en la revista eLife.

Enlace relacionado:
Universidad de Nottingham Trent
Hospital General de Leicester


Miembro Oro
Veterinary Hematology Analyzer
Exigo H400
ANALIZADOR HEMATOLÓGICO DE 3 PARTES
Swelab Alfa Plus Sampler
New
Biochemistry Analyzer
Chemi+ 8100
New
Hepatitis A Rapid Test
Anti-HAV IgM Rapid Test Kit

Print article

Canales

Química Clínica

ver canal
Imagen: una nueva herramienta de diagnóstico brilla una nueva luz poderosa en la oscuridad viral (foto cortesía de Adobe Stock)

Herramienta de diagnóstico portátil utiliza bioluminiscencia para detectar virus POC

Los diagnósticos en el punto de atención se han convertido en herramientas cruciales en muchos hogares, permitiendo a las personas medir la glucemia, realizar pruebas de embarazo e incluso... Más

Microbiología

ver canal
Imagen: la iniciativa de genómica hospitalaria de vanguardia se hace cargo de una superbacteria peligrosa (foto cortesía de 123RF)

Secuenciación genómica en tiempo real detecta superbacteria que causa infecciones hospitalarias

Las infecciones por superbacterias causadas por Staphylococcus aureus, o "estafilococo dorado", son notoriamente difíciles de tratar y se cobran más de un millón de vidas... Más

Patología

ver canal
Imagen: Imagen de microscopía de células de cáncer de mama invasivas degradando su matriz extracelular subyacente (foto cortesía de la Universidad de Turku)

Herramienta visualiza migración celular en cáncer de mama para nuevas vías de tratamiento

Las pacientes con cáncer de mama que progresan de carcinoma ductal in situ (CDIS) a carcinoma ductal invasivo (CDI) se enfrentan a un pronóstico significativamente peor, ya que la enfermedad... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.