Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
INTEGRA BIOSCIENCES AG

Deascargar La Aplicación Móvil




Modelo de IA muestra con precisión la presencia y ubicación del cáncer en imágenes patológicas

Por el equipo editorial de LabMedica en español
Actualizado el 17 Aug 2022
Imagen: El modelo de IA reduce el costo y el tiempo y aumenta la precisión del diagnóstico de cáncer (Fotografía cortesía de Pexels)
Imagen: El modelo de IA reduce el costo y el tiempo y aumenta la precisión del diagnóstico de cáncer (Fotografía cortesía de Pexels)

Por lo general, es necesario marcar con precisión la ubicación del sitio del cáncer en imágenes patológicas para resolver los problemas relacionados con la zonificación que indica la información de ubicación del cáncer, lo que lleva mucho tiempo y, por lo tanto, aumenta el costo. Los modelos de aprendizaje profundo existentes necesitan construir un conjunto de datos, en el que se dibujó con precisión la ubicación del cáncer, para especificar el sitio del cáncer. Ahora, los investigadores han desarrollado un modelo de aprendizaje profundo supervisado débilmente que puede mostrar con precisión la presencia y la ubicación del cáncer en imágenes patológicas basadas solo en datos donde el cáncer está presente. El modelo de aprendizaje profundo mejora la eficiencia y se espera que haga una contribución importante al campo de investigación relevante.

Los científicos del Instituto de Ciencia y Tecnología Daegu Gyeongbuk (DGIST, Daegu, Corea) desarrollaron el modelo de aprendizaje débilmente supervisado que zonifica los sitios de cáncer con solo datos aproximados como "si el cáncer en la imagen está presente o no" está bajo estudio activo. Sin embargo, habría un deterioro significativo en el rendimiento si el modelo de aprendizaje débilmente supervisado existente se aplicara a un gran conjunto de datos de imágenes patológicas donde el tamaño de una imagen es tan grande como unos pocos gigabytes. Para resolver este problema, los investigadores intentaron mejorar el rendimiento dividiendo la imagen patológica en parches, aunque los parches divididos pierden la correlación entre la información de ubicación y cada dato dividido, lo que significa que hay un límite para usar toda la información disponible.

En respuesta, el equipo de investigación descubrió una técnica de segmentación hacia el sitio del cáncer basada únicamente en los datos aprendidos que indican la presencia de cáncer por diapositiva. El equipo desarrolló una tecnología de compresión de imágenes patológicas que primero le enseña a la red a extraer efectivamente características significativas de los parches a través del aprendizaje contrastivo no supervisado y lo utiliza para detectar las características principales mientras mantiene la información de cada ubicación para reducir el tamaño de la imagen y mantener la correlación entre los parches. Más tarde, el equipo desarrolló un modelo que puede encontrar la región que es muy probable que tenga cáncer de las imágenes patológicas comprimidas usando un mapa de activación de clase y ubicar todas las regiones con alta probabilidad de que tengan cáncer de las imágenes patológicas completas usando un módulo de correlación de píxeles (PCM). El modelo de aprendizaje profundo recientemente desarrollado mostró una puntuación de coeficiente de similitud de dados (DSC) de hasta 81-84 solo con los datos de aprendizaje con etiquetas de cáncer a nivel de diapositiva en el problema de zonificación del cáncer. Superó significativamente el rendimiento de los métodos de nivel de parche propuestos anteriormente u otras técnicas de aprendizaje supervisadas débilmente (puntuación DSC: 20 - 70).

“El modelo desarrollado a través de este estudio ha mejorado en gran medida el rendimiento del aprendizaje débilmente supervisado de imágenes patológicas, y se espera que contribuya a mejorar la eficiencia de varios estudios que requieren análisis de imágenes patológicas”, dijo el profesor Park Sang-Hyun del Departamento de Ingeniería Robótica y Mecatrónica en DGIST. "Si podemos mejorar aún más la tecnología relacionada en el futuro, será posible usarla universalmente para varios problemas de zonificación de imágenes médicas".

Enlaces relacionados:
DGIST  

Miembro Oro
Automated MALDI-TOF MS System
EXS 3000
KIT DE PRUEBA POC PARA H.PYLORI
Hepy Urease Test
6 Part Hematology Analyzer with RET + IPF
Mispa HX 88
Miembro Oro
SISTEMA DE RECOLECCIÓN Y TRANSPORTE
PurSafe Plus®

Canales

Química Clínica

ver canal
Imagen: Las coautoras Nina Zhao, Ph.D., y Kine Eide Kvitne, Ph.D., analizan muestras biológicas para detectar la exposición a medicamentos (fotografía cortesía de UC San Diego Health Sciences)

Herramienta en línea detecta exposición a medicamentos directamente en muestras de pacientes

Los médicos suelen basarse en entrevistas con pacientes y sus historiales médicos para determinar qué medicamentos ha tomado una persona, pero esta información suele ser incompleta. Las personas pueden... Más

Hematología

ver canal
Imagen: las células leucémicas residuales pueden predecir la supervivencia a largo plazo en la leucemia mieloide aguda (fotografía cortesía de Shutterstock)

Pruebas de MRD podrían predecir supervivencia en pacientes con leucemia

La leucemia mieloide aguda es un cáncer sanguíneo agresivo que altera la producción normal de células sanguíneas y suele recaer incluso después de un tratamiento intensivo. Actualmente, los médicos carecen... Más

Inmunología

ver canal
Imagen: el simple marcador sanguíneo puede predecir qué pacientes con linfoma se beneficiarán más de la terapia con células T CAR (fotografía cortesía de Shutterstock)

Análisis de sangre rutinario puede predecir mayor beneficiario de terapia con células T CAR

La terapia con células T CAR ha transformado el tratamiento para pacientes con linfoma no Hodgkin en recaída o resistente al tratamiento. Sin embargo, muchos pacientes finalmente recaen a... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.