Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
Werfen

Deascargar La Aplicación Móvil




Nueva tecnología de IA supera métodos tradicionales en segmentación de imágenes biomédicas

Por el equipo editorial de LabMedica en español
Actualizado el 29 Nov 2024
Imagen: La arquitectura general, la entrada y la salida del CelloType (Foto cortesía de Nature Methods: DOI: 10.1038/s41592-024-02513-1)
Imagen: La arquitectura general, la entrada y la salida del CelloType (Foto cortesía de Nature Methods: DOI: 10.1038/s41592-024-02513-1)

La ómica espacial es un campo emergente que integra técnicas de perfilado molecular como la genómica, la transcriptómica y la proteómica con información espacial, lo que permite a los investigadores determinar la ubicación de varias moléculas dentro de las células en tejidos complejos. Este enfoque ofrece información valiosa sobre los mecanismos celulares detrás del desarrollo y la progresión de la enfermedad, lo que es crucial para mejorar los diagnósticos y avanzar en terapias dirigidas, un enfoque central en la investigación traslacional. La ómica espacial permite el estudio de enfermedades como el cáncer y la enfermedad renal crónica al revelar cómo las interacciones celulares y los microambientes influyen en la progresión de la enfermedad y las respuestas terapéuticas. El primer paso para analizar los datos de la ómica espacial implica tareas como la segmentación celular, que define los límites celulares, y la clasificación, que asigna los tipos de células. Los avances recientes en las tecnologías de la ómica espacial permiten el examen de tejidos intactos a nivel celular, lo que proporciona información incomparable sobre la relación entre la arquitectura celular y la función de diferentes tejidos y órganos.

Con el aumento del volumen de datos ómicos espaciales, existe una creciente demanda de herramientas computacionales avanzadas para el análisis. En respuesta, los investigadores del Hospital Infantil de Filadelfia (CHOP, Filadelfia, PA, EUA) han desarrollado una tecnología de inteligencia artificial (IA) llamada CelloType, un modelo integral diseñado para mejorar la precisión de la identificación y clasificación de células en imágenes de tejidos de alto contenido. CHOP participa en proyectos destacados como la Red del Atlas de Tumores Humanos, el Programa del Atlas BioMolecular Humano (HuBMAP) y la iniciativa BRAIN, que utilizan tecnologías similares para mapear la organización espacial de tejidos sanos y enfermos. El modelo CelloType utiliza aprendizaje profundo basado en transformadores, un tipo de IA que automatiza el análisis de datos complejos y de alta dimensión. El aprendizaje profundo permite que el modelo identifique relaciones y contextos complejos, lo que lo hace muy eficaz para tareas de procesamiento de lenguaje natural y análisis de imágenes. El modelo está optimizado para mejorar la precisión en la detección, segmentación y clasificación de células.

En su estudio, los investigadores compararon el rendimiento de CelloType con varios métodos tradicionales que utilizan conjuntos de datos de tejidos tanto animales como humanos. Los enfoques tradicionales suelen seguir un proceso de dos etapas de segmentación seguida de clasificación, que puede ser ineficiente e inexacto. Por el contrario, CelloType emplea una estrategia de aprendizaje multitarea que integra tanto la segmentación como la clasificación en un solo paso, lo que mejora la eficiencia y la precisión. CelloType también superó los métodos de segmentación existentes en diferentes tipos de imágenes, incluidas imágenes naturales, imágenes con luz brillante e imágenes de fluorescencia. Para la clasificación del tipo de célula, el estudio, publicado en Nature Methods, demostró que CelloType superó un modelo compuesto por métodos individuales de última generación y un modelo de segmentación de instancias de alto rendimiento, que utiliza IA para delinear con precisión los objetos en una imagen. Además, utilizando una imagen de tejido multiplexada (un tipo de imagen biomédica avanzada que muestra múltiples biomarcadores en una sola muestra de tejido), los investigadores demostraron cómo CelloType puede realizar una segmentación y clasificación a múltiples escalas de componentes celulares y no celulares dentro de un tejido. Esta capacidad permite un análisis más detallado de estructuras celulares pequeñas y grandes, agilizando significativamente el proceso.

"Estamos apenas empezando a descubrir el potencial de esta tecnología", afirmó el Dr. Kai Tan, autor principal del estudio y profesor del Departamento de Pediatría del CHOP. "Este enfoque podría redefinir la forma en que entendemos los tejidos complejos a nivel celular, allanando el camino para avances transformadores en el ámbito de la atención médica".

Miembro Oro
PRUEBA DE VIRUS SINCITIAL RESPIRATORIO
OSOM® RSV Test
KIT DE PRUEBA POC PARA H.PYLORI
Hepy Urease Test
Sperm Quality Analyis Kit
QwikCheck Beads Precision and Linearity Kit
Miembro Oro
SISTEMA DE RECOLECCIÓN Y TRANSPORTE
PurSafe Plus®

Canales

Química Clínica

ver canal
Imagen: una técnica rápida de espectrometría de masas permite la detección de medicamentos casi en tiempo real en entornos de atención de emergencia (Boccuzzi, S. et al., Analyst 151, 741–748 (2026). DOI: 10.1039/D5AN01148E)

Método rápido de análisis sanguíneo permite decisiones más seguras en emergencias por medicamentos

La intoxicación aguda por drogas recreativas es un motivo frecuente de visitas a urgencias; sin embargo, los médicos rara vez tienen acceso a resultados toxicológicos confirmatorios... Más

Inmunología

ver canal
Imagen: las células tumorales circulantes aisladas de muestras de sangre podrían ayudar a guiar las decisiones sobre inmunoterapia (fotografía cortesía de Shutterstock)

Análisis de sangre identifica pacientes con cáncer pulmonar beneficiarios de fármaco de inmunoterapia

El cáncer de pulmón de células pequeñas (CPCP) es una enfermedad agresiva con opciones de tratamiento limitadas, e incluso las inmunoterapias recientemente aprobadas no benefician... Más

Microbiología

ver canal
Imagen: la tecnología basada en CRISPR elimina elementos resistentes a los antibióticos de poblaciones de bacterias (fotografía cortesía de Bier Lab/UC San Diego)

Tecnología con CRISPR neutraliza bacterias resistentes a antibióticos

La resistencia a los antibióticos se ha convertido en una crisis sanitaria mundial, con proyecciones que estiman más de 10 millones de muertes al año para 2050 a medida que las &q... Más
Copyright © 2000-2026 Globetech Media. All rights reserved.