Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
INTEGRA BIOSCIENCES AG

Deascargar La Aplicación Móvil




Aprendizaje automático detecta el cáncer analizando el ADN en las muestras de sangre

Por el equipo editorial de LabMedica en español
Actualizado el 19 Jun 2019
Imagen: Una prueba nueva de biopsia líquida llamada DELFI (evaluación de ADN de fragmentos para una interceptación temprana) utiliza inteligencia artificial para detectar pacientes con cáncer identificando fragmentaciones alteradas de ADN en la sangre (Fotografía cortesía de Carolyn Hruban, Universidad Johns Hopkins).
Imagen: Una prueba nueva de biopsia líquida llamada DELFI (evaluación de ADN de fragmentos para una interceptación temprana) utiliza inteligencia artificial para detectar pacientes con cáncer identificando fragmentaciones alteradas de ADN en la sangre (Fotografía cortesía de Carolyn Hruban, Universidad Johns Hopkins).
Los investigadores han descrito un enfoque de prueba de principio para el cribado, la detección temprana y el seguimiento del cáncer humano basado en un enfoque de aprendizaje automático que evalúa los patrones de fragmentación del ADN libre de células, en todo el genoma.

Si bien el ADN libre de células en la sangre proporciona una vía de diagnóstico no invasiva para los pacientes con cáncer, las características de los orígenes y las características moleculares del ADN libre de células son poco conocidas. Para corregir esta falta, los investigadores de la Universidad Johns Hopkins (Baltimore, MD, EUA) desarrollaron un enfoque basado en el aprendizaje automático para identificar patrones anormales de fragmentos de ADN en la sangre de los pacientes con cáncer.

Utilizaron este método DELFI (evaluación de ADN de fragmentos para la interceptación temprana) con el fin de analizar los perfiles de fragmentación de 236 pacientes con cáncer de mama, colorrectal, pulmón, ovario, páncreas, estómago o bilis y de 245 personas sanas.

El modelo de aprendizaje automático incorporó características de fragmentación del genoma con sensibilidades de detección que oscilaron entre el 57% y más del 99% entre los siete tipos de cáncer con una especificidad del 98%. Los perfiles de fragmentación se podrían usar para identificar el tejido de origen de los cánceres a un número limitado de sitios en el 75% de los casos. La combinación de este enfoque con el análisis de ADN libre de células basado en mutaciones detectó el 91% de los pacientes con cáncer.

“Por diversas razones, un genoma de cáncer está empaquetado de una manera muy desorganizada, lo que significa que cuando las células cancerosas mueren, liberan su ADN de forma caótica en el torrente sanguíneo”, dijo la primera autora, la Dra. Jillian Phallen, investigadora postdoctoral en la Universidad Johns Hopkins. “Al examinar este ADN libre de células (cfADN), DELFI ayuda a identificar la presencia de cáncer mediante la detección de anomalías en el tamaño y la cantidad de ADN en diferentes regiones del genoma en función de cómo está empaquetado”.

“Nos alienta el potencial de DELFI porque analiza un conjunto completamente independiente de características de ADN libre de células, de aquellas que han planteado dificultades a lo largo de los años, y esperamos trabajar con nuestros colaboradores de todo el mundo para que esta prueba esté disponible para los pacientes”, dijo el autor principal, el Dr. Victor E. Velculescu, profesor de oncología en la Universidad Johns Hopkins.

El método DELFI se describió en la edición en línea del 29 de mayo de 2019 de la revista Nature.

Enlace relacionado:
Johns Hopkins University

Miembro Oro
Automated MALDI-TOF MS System
EXS 3000
KIT DE PRUEBA POC PARA H.PYLORI
Hepy Urease Test
Gram-Negative Blood Culture Assay
LIAISON PLEX Gram-Negative Blood Culture Assay
Capillary Blood Collection Tube
IMPROMINI M3

Canales

Química Clínica

ver canal
Imagen: Las coautoras Nina Zhao, Ph.D., y Kine Eide Kvitne, Ph.D., analizan muestras biológicas para detectar la exposición a medicamentos (fotografía cortesía de UC San Diego Health Sciences)

Herramienta en línea detecta exposición a medicamentos directamente en muestras de pacientes

Los médicos suelen basarse en entrevistas con pacientes y sus historiales médicos para determinar qué medicamentos ha tomado una persona, pero esta información suele ser incompleta. Las personas pueden... Más

Hematología

ver canal
Imagen: las células leucémicas residuales pueden predecir la supervivencia a largo plazo en la leucemia mieloide aguda (fotografía cortesía de Shutterstock)

Pruebas de MRD podrían predecir supervivencia en pacientes con leucemia

La leucemia mieloide aguda es un cáncer sanguíneo agresivo que altera la producción normal de células sanguíneas y suele recaer incluso después de un tratamiento intensivo. Actualmente, los médicos carecen... Más

Inmunología

ver canal
Imagen: el simple marcador sanguíneo puede predecir qué pacientes con linfoma se beneficiarán más de la terapia con células T CAR (fotografía cortesía de Shutterstock)

Análisis de sangre rutinario puede predecir mayor beneficiario de terapia con células T CAR

La terapia con células T CAR ha transformado el tratamiento para pacientes con linfoma no Hodgkin en recaída o resistente al tratamiento. Sin embargo, muchos pacientes finalmente recaen a... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.