Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
INTEGRA BIOSCIENCES AG

Deascargar La Aplicación Móvil




Modelo de IA analiza células en muestras de tejido sin necesidad de un patólogo capacitado

Por el equipo editorial de LabMedica en español
Actualizado el 11 Apr 2023
Imagen: La biopsia de tejido se procesa a través de un molino de tejido y luego se analiza utilizando citometría de deformabilidad en tiempo real (Fotografía cortesía de MPL)
Imagen: La biopsia de tejido se procesa a través de un molino de tejido y luego se analiza utilizando citometría de deformabilidad en tiempo real (Fotografía cortesía de MPL)

La información rápida y precisa sobre el tejido operado es crucial para guiar los siguientes pasos de un cirujano durante la cirugía del cáncer. En los casos en que los tumores sólidos están presentes en un paciente con cáncer, el cirujano generalmente envía una muestra de biopsia a un patólogo para una evaluación rápida. El patólogo debe determinar, entre otras cosas, si el tejido está sano, el grado de propagación del cáncer a los órganos, etc. El proceso de diagnóstico intraoperatorio tradicional es laborioso, requiere mucho tiempo y muchos recursos. Ahora, los científicos han desarrollado una nueva técnica que puede realizar un análisis confiable de tumores sólidos en tan solo 30 minutos, sin necesidad de un patólogo capacitado.

Un equipo de investigación del Instituto Max Planck para la Ciencia de la Luz (MPL, Erlangen, Alemania) ha creado una técnica novedosa que permite a los médicos analizar células en muestras de tejido de pacientes con cáncer de forma rápida y precisa, sin necesidad de la experiencia de un patólogo capacitado. El equipo utilizó inteligencia artificial (IA) para evaluar los datos generados por su método. Para su estudio, los investigadores utilizaron un molinillo de tejidos para separar rápidamente las muestras de biopsia hasta el nivel de una sola célula. Posteriormente, estas células individuales se analizaron mediante citometría de deformabilidad en tiempo real (RT-DC), un método sin etiquetas y capaz de examinar las propiedades físicas de hasta 1.000 células por segundo. Este método es 36.000 veces más rápido que los métodos convencionales utilizados para evaluar la deformabilidad celular.

La RT-DC implica empujar células individuales a alta velocidad a través de un canal microscópico, donde sufren deformación debido al estrés y la presión. Se capturan imágenes de cada célula, que luego los científicos utilizan para determinar una variedad de características físicas de las células, incluido su tamaño, forma y deformabilidad. Sin embargo, realizar únicamente de un análisis físico de las células es insuficiente para fines de diagnóstico. Los médicos deben ser capaces de interpretar estos resultados de forma independiente, sin necesidad de contar con la experiencia de un patólogo o médico capacitado.

Por lo tanto, para lograr esto, los investigadores combinaron el molinillo de tejidos y RT-DC con IA. El modelo de IA evalúa los extensos y complejos conjuntos de datos obtenidos a través del análisis RT-DC y evalúa rápidamente si una muestra de biopsia contiene tejido canceroso o no. Además, el uso de la IA confirmó la importancia de la deformabilidad celular como biomarcador, ya que los resultados fueron notablemente inferiores cuando la IA no se entrenó con esta variable.

En general, el procedimiento completo, que incluye el procesamiento de muestras y el análisis de datos automatizado, se puede ejecutar en menos de 30 minutos, lo que lo hace lo suficientemente rápido como para realizarlo durante la cirugía. Una ventaja significativa de este método es que no requiere la disponibilidad inmediata de un patólogo para analizar la muestra. Esto es particularmente ventajoso ya que las consultas intraoperatorias pueden no ser siempre factibles y, en algunos casos, las muestras solo pueden examinarse después de que se completa la cirugía. Según los resultados, es posible que los pacientes deban regresar al hospital para someterse a una cirugía adicional, a menudo días después. Además de detectar la presencia de tumores, esta técnica también se utilizó para detectar la inflamación de los tejidos en un modelo de enfermedad inflamatoria intestinal (EII). En el futuro, este método podría ayudar a los médicos a evaluar la gravedad de la enfermedad o distinguir entre varios tipos de EII. El equipo tiene como objetivo eventualmente hacer la transición de su método a un entorno clínico para respaldar o incluso suplantar el análisis patológico tradicional.

“Este fue un estudio de prueba de concepto: el método pudo determinar con precisión la presencia de tejido tumoral en nuestras muestras muy rápidamente”, dijo la Dra. Despina Soteriou, miembro del equipo de investigación. “El siguiente paso será continuar trabajando muy de cerca con los médicos para determinar cómo este método puede traducirse mejor a la clínica”.

Enlaces relacionados:
MPL  

Miembro Oro
ENSAYO INMUNOCROMATOGRÁFICO
CRYPTO Cassette
Miembro Oro
ENSAYOS TDM PARA ANTIPSICÓTICOS
Saladax Antipsychotic Assays
Miembro Oro
ENSAYO DE INMUNODIFUSIÓN RADIAL
Radial Immunodifusion - C3 ID
Clinical Chemistry System
P780

Canales

Diagnóstico Molecular

ver canal
Imagen: el pequeño dispositivo con chip separa las células cancerosas del torrente sanguíneo para tratar el cáncer de páncreas (fotografía cortesía de Sana Sheybanikashani/UIC)

Dispositivo microfluídico predice recurrencia del cáncer de páncreas tras cirugía

El adenocarcinoma ductal pancreático es uno de los cánceres más mortales, difícil de detectar precozmente y propenso a reaparecer en casi el 70 % de los pacientes tras el tratamiento.... Más

Hematología

ver canal
Imagen: una investigación ha relacionado la agregación plaquetaria en muestras de sangre de la mediana edad con los marcadores cerebrales tempranos de la enfermedad de Alzheimer (fotografía cortesía de Shutterstock)

Análisis sanguíneo de actividad plaquetaria en mediana edad podría identificar riesgo temprano de Alzheimer

La detección temprana de la enfermedad de Alzheimer sigue siendo una de las mayores necesidades insatisfechas en neurología, sobre todo porque los cambios biológicos que subyacen al... Más

Microbiología

ver canal
Imagen: desarrollo de terapias y diagnósticos dirigidos para la tuberculosis extrapulmonar en el Hospital Universitario de Colonia (fotografía cortesía de Michael Wodak/Uniklinik Köln)

Firmas moleculares basadas en sangre para permitir un diagnóstico rápido de TBEP

La tuberculosis extrapulmonar (TBEP) sigue siendo difícil de diagnosticar y tratar debido a su propagación más allá de los pulmones y la falta de biomarcadores fácilmente accesibles. A pesar de que la... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.