Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros

Deascargar La Aplicación Móvil




Modelo de aprendizaje profundo impulsado por IA cuenta con precisión tipos de células en imágenes de portaobjetos completos

Por el equipo editorial de LabMedica en español
Actualizado el 26 Apr 2023
Imagen: Un marco de aprendizaje profundo que estima los tipos de células en una imagen de patología digital de diapositivas completa (Fotografía cortesía de la Universidad de Finlandia Oriental)
Imagen: Un marco de aprendizaje profundo que estima los tipos de células en una imagen de patología digital de diapositivas completa (Fotografía cortesía de la Universidad de Finlandia Oriental)

Se necesitan métodos mejorados para contar tipos de células en imágenes de patología utilizando enfoques de aprendizaje profundo. Las técnicas actuales basadas en la segmentación y la regresión enfrentan desafíos como la necesidad de anotaciones precisas a nivel de píxel, dificultades para manejar núcleos superpuestos o regiones oscurecidas e información insuficiente sobre ubicaciones de tipos de células individuales. Además, los modelos probabilísticos tienden a producir predicciones inciertas y pueden dar lugar a predicciones con exceso de confianza. Los investigadores ahora han desarrollado un modelo avanzado de aprendizaje profundo para predecir y contar varios tipos de células en el microambiente tumoral, que se espera mejore la precisión y la eficiencia del diagnóstico del cáncer y la planificación del tratamiento.

La identificación de los diferentes tipos de células en el microambiente del tumor puede ofrecer información valiosa sobre la histología y la biología subyacente del tumor. El recuento de tipos de células preciso y fiable también es fundamental para la investigación y aplicaciones clínicas. Además, los recuentos de células se pueden utilizar para estudiar la distribución de diferentes tipos de células en el microambiente del tumor y su correlación con los resultados del paciente. En entornos clínicos, los recuentos de células pueden ayudar a monitorear la respuesta a la terapia y hacer seguimiento a la progresión de la enfermedad. Investigadores de la Universidad Finlandia Oriental (Kuopio, Finlandia) han propuesto un nuevo enfoque de aprendizaje profundo multitarea probatorio, llamado CT-EMT, para superar las limitaciones de los métodos actuales para el recuento de tipos de células en imágenes de tumores de portaobjetos completos. Este enfoque formula la estimación de densidad de tipo de célula y el conteo de tipo de célula como tareas de regresión, y la segmentación de núcleos como una tarea de clasificación a nivel de píxel.

El métoso de conteo y segmentación del tipo de célula propuesto ha superado a los modelos HoVer-Net y StarDist de última generación, con mejoras relativas del 21 % y el 12 % en términos de calidad panóptica media. El modelo desarrollado puede ofrecer interpretaciones persuasivas de diversos tipos de células y se puede aplicar a varias tareas de patología computacional, como la clasificación de tumores, el pronóstico y la planificación del tratamiento. Este trabajo allanará el camino para la creación de herramientas de patología digital más precisas y sólidas que puedan ayudar a los patólogos y médicos en el diagnóstico y tratamiento de pacientes con cáncer.

“El equipo de investigación de UEF Cancer AI tiene como objetivo explorar el potencial del uso de la tecnología de aprendizaje profundo en el análisis de datos de salud y cáncer”, dijo el investigador principal Hamid Behravan de la Universidad del Este de Finlandia. “Nuestro estudio implicará el desarrollo y la evaluación de algoritmos de aprendizaje profundo de vanguardia para analizar el cáncer y varios tipos de datos relacionados con la salud, incluidas imágenes médicas, datos genómicos y registros de salud electrónicos. Creemos que este enfoque tiene el potencial de mejorar significativamente la precisión y la eficiencia del diagnóstico y la planificación del tratamiento del cáncer de mama, así como de facilitar el descubrimiento de nuevos conocimientos y patrones en los datos sobre el cáncer. Esperamos que nuestra investigación contribuya al avance de la medicina de precisión y al desarrollo de enfoques más efectivos y personalizados para la prevención y el pronóstico del cáncer de mama”.

Enlaces relacionados:
Universidad de Finlandia Oriental

New
Miembro Oro
Clinical Drug Testing Panel
DOA Urine MultiPlex
KIT DE PRUEBA POC PARA H.PYLORI
Hepy Urease Test
Clinical Chemistry System
P780
Miembro Oro
ENSAYO INMUNOCROMATOGRÁFICO
CRYPTO Cassette

Canales

Diagnóstico Molecular

ver canal
Imagen: información adicional sobre la metilación del ADN podría permitir diagnósticos más exactos y precisos (fotografía cortesía de Shutterstock)

Análisis de ADN dos en uno mejora precisión diagnóstica y ahorra tiempo y costes

El diagnóstico de trastornos del desarrollo suele basarse en el análisis de secuencias de ADN, pero este enfoque puede pasar por alto el contexto epigenético, como la metilación... Más

Inmunología

ver canal
Imagen: las células tumorales circulantes aisladas de muestras de sangre podrían ayudar a guiar las decisiones sobre inmunoterapia (fotografía cortesía de Shutterstock)

Análisis de sangre identifica pacientes con cáncer pulmonar beneficiarios de fármaco de inmunoterapia

El cáncer de pulmón de células pequeñas (CPCP) es una enfermedad agresiva con opciones de tratamiento limitadas, e incluso las inmunoterapias recientemente aprobadas no benefician... Más

Microbiología

ver canal
Imagen: nueva evidencia sugiere que los desequilibrios en el microbioma intestinal pueden contribuir a la aparición y progresión del deterioro cognitivo leve y la enfermedad de Alzheimer (fotografía cortesía de Adobe Stock)

Nuevo estudio identifica características del microbioma intestinal asociadas con enfermedad de Alzheimer

La enfermedad de Alzheimer afecta a aproximadamente 6,7 millones de personas en Estados Unidos y a casi 50 millones en todo el mundo; sin embargo, el deterioro cognitivo temprano sigue siendo difícil de... Más
Copyright © 2000-2026 Globetech Media. All rights reserved.