Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
INTEGRA BIOSCIENCES AG

Deascargar La Aplicación Móvil




Microscopio automatizado impulsado por IA identifica con precisión parásitos de malaria en muestras de sangre

Por el equipo editorial de LabMedica en español
Actualizado el 18 Aug 2023
Imagen: El nuevo microscopio de alta tecnología utiliza IA para detectar con éxito la malaria en los viajeros que regresan (Fotografía cortesía de Freepik)
Imagen: El nuevo microscopio de alta tecnología utiliza IA para detectar con éxito la malaria en los viajeros que regresan (Fotografía cortesía de Freepik)

Cada año, más de 200 millones de personas contraen malaria, y más de medio millón de estos casos resultan en muertes. La Organización Mundial de la Salud aboga por el uso de diagnósticos basados en parásitos antes de iniciar el tratamiento de la enfermedad infecciosa causada por parásitos Plasmodium. Hay varias técnicas de diagnóstico disponibles, incluida la microscopía óptica convencional, las pruebas de diagnóstico rápido y la PCR. Sin embargo, el punto de referencia establecido para el diagnóstico de la malaria es la microscopía óptica manual, donde un especialista examina muestras de sangre bajo un microscopio para verificar la presencia de parásitos de la malaria. Sin embargo, la precisión de los resultados depende en gran medida de la experiencia del microscopista y puede verse afectada por la fatiga causada por la carga de trabajo entre los profesionales que realizan las pruebas.

Debido a la naturaleza exigente del diagnóstico tradicional y la gran carga de trabajo, un equipo internacional de investigadores llevó a cabo una investigación sobre la viabilidad de emplear un sistema novedoso que combina un microscopio de barrido automatizado con inteligencia artificial (IA) para el diagnóstico clínico. Los resultados indicaron que este sistema identificó los parásitos de la malaria con casi la misma precisión que los microscopistas experimentados que siguen los procedimientos de diagnóstico estándar. Este avance tiene el potencial de aliviar la carga de los microscopistas y aumentar el número manejable de casos de pacientes.

Investigadores del Hospital de Enfermedades Tropicales de la UCLH (Londres, Reino Unido) probaron un sistema de diagnóstico de la malaria totalmente automatizado que constaba de componentes de hardware y software. La plataforma de microscopía automatizada escanea muestras de sangre y los algoritmos para la detección de malaria procesan las imágenes para detectar la presencia y cantidad de parásitos. Los investigadores analizaron más de 1.200 muestras de sangre de viajeros que habían regresado al Reino Unido desde regiones donde prevalece la malaria. El estudio evaluó la precisión del sistema de microscopio de IA en un entorno clínico real bajo condiciones ideales.

Los investigadores compararon los resultados obtenidos tanto con el microscopio óptico manual como con el sistema de microscopio de IA. De forma manual, se identificaron 113 muestras con parásitos de la malaria, mientras que el sistema de IA detectó con precisión 99 muestras positivas, lo que resultó en una tasa de precisión del 88 %. A pesar de esta tasa de precisión encomiable, el sistema automatizado también produjo falsos positivos, indicando que 122 muestras eran positivas cuando no lo eran, lo que podría llevar a la administración innecesaria de medicamentos contra la malaria a los pacientes.

"Con una tasa de precisión diagnóstica del 88 % en relación con los microscopistas, el sistema de IA identificó los parásitos de la malaria casi tan bien como los expertos", dijo la Dra. Roxanne Rees-Channer, investigadora del Hospital de Enfermedades Tropicales de la UCLH. “Este nivel de desempeño en un entorno clínico es un logro importante para los algoritmos de IA dirigidos a la malaria. Indica que el sistema de hecho puede ser una herramienta clínicamente útil para el diagnóstico de la malaria en entornos apropiados”.

Enlaces relacionados:
UCLH

Miembro Oro
Fibrinolysis Assay
HemosIL Fibrinolysis Assay Panel
KIT DE PRUEBA POC PARA H.PYLORI
Hepy Urease Test
Autoimmune Liver Diseases Assay
Microblot-Array Liver Profile Kit
8-Channel Pipette
SAPPHIRE 20–300 µL

Canales

Química Clínica

ver canal
Imagen: la miniaturización de la compleja tecnología MS a escala de chip elimina el uso de equipos de laboratorio tradicionales (fotografía cortesía de Detect-ION)

Diagnóstico de aliento POC detecta patógenos causantes de neumonía

Pseudomonas aeruginosa es una causa importante de neumonía intrahospitalaria y asociada a la ventilación mecánica, especialmente en receptores de trasplante de pulmón y pacientes... Más

Diagnóstico Molecular

ver canal
Imagen: una prueba de biomarcadores sanguíneos ofrece un pronóstico más claro después de un paro cardíaco (fotografía cortesía de Adobe Stock)

Biomarcador sanguíneo mejora pronóstico de lesión cerebral temprana tras paro cardíaco

Tras un paro cardíaco, muchos pacientes permanecen inconscientes durante días, lo que deja a médicos y familiares con la incertidumbre de si es posible una recuperación significativa.... Más

Hematología

ver canal
Imagen: las células leucémicas residuales pueden predecir la supervivencia a largo plazo en la leucemia mieloide aguda (fotografía cortesía de Shutterstock)

Pruebas de MRD podrían predecir supervivencia en pacientes con leucemia

La leucemia mieloide aguda es un cáncer sanguíneo agresivo que altera la producción normal de células sanguíneas y suele recaer incluso después de un tratamiento intensivo. Actualmente, los médicos carecen... Más

Inmunología

ver canal
Imagen: el análisis de sangre ADNlc no invasivo puede identificar eventos adversos de la terapia de puntos de control inmunitario en pacientes con cáncer (Fotografía cortesía de Elizabeth Cook)

Análisis sanguíneo podría detectar efectos adversos de inmunoterapia

Los inhibidores de puntos de control inmunitario han transformado el tratamiento del cáncer, pero también pueden desencadenar graves efectos adversos inmunitarios que dañan órganos... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.