Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Please note that the LabMedica website is also available in a complete English version
Presenta Sitios para socios Información LinkXpress
Ingresar
Publique su anuncio con nosotros
LGC Clinical Diagnostics

Deascargar La Aplicación Móvil




Eventos

24 feb 2024 - 28 feb 2024
05 mar 2024 - 07 mar 2024

IA identifica pacientes con cáncer de pulmón avanzado que responden a inmunoterapia

Por el equipo editorial de LabMedica en español
Actualizado el 16 Oct 2023
Print article
Imagen: IA identifica con mayor precisión a los pacientes con cáncer de pulmón avanzado que responden a la inmunoterapia (Fotografía cortesía de 123RF)
Imagen: IA identifica con mayor precisión a los pacientes con cáncer de pulmón avanzado que responden a la inmunoterapia (Fotografía cortesía de 123RF)

La planificación del tratamiento del cáncer de pulmón suele ser compleja debido a las variaciones en la evaluación de los biomarcadores inmunológicos. En un nuevo estudio, los investigadores utilizaron inteligencia artificial (IA) y técnicas de patología digital para mejorar la precisión de dichas evaluaciones.

El estudio realizado por científicos de la Facultad de Medicina de Yale (New Haven, CT, EUA) se centró en cómo la evaluación digital basada en IA podría funcionar frente a los métodos manuales tradicionales para calificar el biomarcador inmunológico PD-L1. El objetivo era ver si un nuevo tratamiento de inmunoterapia llamado atezolizumab podría ser beneficioso para los pacientes que padecen cáncer de pulmón de células no pequeñas (CPCNP) avanzado. Para llevar a cabo esta investigación, se basaron en datos del ensayo de fase III IMpower 110, que examinó la eficacia de atezolizumab frente a la quimioterapia para el tratamiento del CPCNP avanzado. A través de evaluaciones de células tumorales tanto manuales como guiadas por IA, el equipo descubrió que el sistema de IA era más eficiente para identificar pacientes con PD-L1 positivo que los métodos manuales.

Además, el estudio encontró que tanto las técnicas de puntuación manual tradicionales como las basadas en IA eran igualmente competentes para predecir los resultados de los pacientes, incluido cuánto tiempo vivían los pacientes y cuánto tiempo pasaba antes de que progresara el cáncer. Además, el sistema de IA ayudó a confirmar que para los pacientes con un subtipo particular de CPCNP conocido como histología escamosa, la existencia de linfocitos PD-L1+ estaba relacionada con mejores resultados en términos de ralentizar la progresión de la enfermedad cuando se trataban con atezolizumab.

"Nuestro estudio sugiere que la inteligencia artificial tiene la capacidad de mejorar la identificación de pacientes positivos para PD-L1 al proporcionar una precisión predictiva mejor que la puntuación manual", dijo Roy S. Herbst, autor principal del estudio y subdirector del Centro Oncológico de Yale. "La investigación subraya el potencial de la patología digital y las herramientas de IA para mejorar la precisión de la puntuación PD-L1 tanto para la práctica clínica como para los ensayos clínicos".

"Los conocimientos adquiridos con la IA y la puntuación digital podrían facilitar el diagnóstico y la elección del tratamiento adecuado", añadió Herbst. "Nuestros datos muestran que esta tecnología de IA puede ayudar a perfeccionar las estrategias para el tratamiento del cáncer de pulmón de células no pequeñas avanzado".

Enlaces relacionados:
Escuela de Medicina de Yale  

Miembro Platino
PRUEBA RÁPIDA COVID-19
OSOM COVID-19 Antigen Rapid Test
One Step HbA1c Measuring System
GREENCARE A1c
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Miembro Oro
Reagent Reservoirs
Reagent Reservoirs

Print article

Canales

Química Clínica

ver canal
Imagen: La solución de espectrometría de masas de Cobas para laboratorios clínicos (Fotografía cortesía de Roche Diagnostics)

Analizador clínico automatizado basado en espectrometría de masas podría transformar pruebas de laboratorio

La espectrometría de masas, conocida por su mayor sensibilidad y especificidad en comparación con los inmunoensayos, es particularmente efectiva para probar moléculas como la vitamina... Más

Hematología

ver canal
Imagen: El CytoTracker Leukometer es un dispositivo portátil que ofrece rápidamente lecturas basadas en una sola gota de sangre (Fotografía cortesía de RizLab Health)

Rastreador portátil de glóbulos blancos podría permitir pruebas rápidas de infecciones

Los glóbulos blancos, o leucocitos, son indicadores clave de la salud del sistema inmunológico de un individuo. Los recuentos altos o bajos de leucocitos pueden indicar la gravedad de una infección, indicar... Más

Inmunología

ver canal
Imagen: Configuracion de la citometría con el chip de clasificación de células de IMEC (Fotografía cortesía de IMEC)

Tecnología de chip clasificador de células podría allanar el camino para elaboración de perfiles inmunológicos POC

Monitorear la respuesta del sistema inmunológico de los pacientes con cáncer durante la enfermedad y el tratamiento es importante para lograr resultados favorables. Para hacer esto, los laboratorios... Más

Tecnología

ver canal
Imagen: El sensor electroquímico detecta HPV-16 y HPV-18 con alta especificidad (Fotografía cortesía de 123RF)

Biosensor de ADN permite diagnóstico temprano del cáncer de cuello uterino

El disulfuro de molibdeno (MoS2), reconocido por su potencial para formar nanoláminas bidimensionales como el grafeno, es un material que llama cada vez más la atención de la comunidad... Más
Copyright © 2000-2024 Globetech Media. All rights reserved.