Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros

Deascargar La Aplicación Móvil




Modelo de IA predice resultados de pacientes en múltiples tipos de cáncer

Por el equipo editorial de LabMedica en español
Actualizado el 21 Dec 2023

En investigaciones anteriores, los científicos han examinado el impacto de las mutaciones en los genes que codifican factores epigenéticos (elementos que influyen en la activación o desactivación de genes) sobre la susceptibilidad al cáncer. Más...

Sin embargo, la comprensión de la influencia de los niveles de estos factores en la progresión del cáncer ha permanecido en gran medida inexplorada. Para abordar esta brecha, los investigadores han desarrollado un innovador modelo de inteligencia artificial (IA) basado en factores epigenéticos que pronostica con éxito los resultados de los pacientes en varios tipos de cáncer. Lo hace analizando los patrones de expresión genética de factores epigenéticos dentro de los tumores y categorizándolos en distintos grupos. Se ha demostrado que este método predice los resultados de los pacientes de manera más efectiva que las métricas convencionales como el grado y el estadio del cáncer. Además, estos conocimientos proporcionan una base para futuras terapias dirigidas a factores epigenéticos en el tratamiento del cáncer, como las histonas acetiltransferasas y los remodeladores de cromatina SWI/SNF.

Investigadores de UCLA Health (Los Ángeles, CA, EUA) examinaron los patrones de expresión de 720 factores epigenéticos en tumores de 24 tipos de cáncer diferentes. Clasificaron estos tumores en grupos únicos según estos patrones. Su estudio reveló que en 10 de estos tipos de cáncer, los grupos se correlacionaban con diferencias significativas en los resultados de los pacientes, incluida la supervivencia libre de progresión, la supervivencia específica de la enfermedad y la supervivencia general. Esta correlación fue particularmente notable en el carcinoma adrenocortical, el carcinoma de células claras renales, el glioma cerebral de grado inferior, el carcinoma hepatocelular de hígado y el adenocarcinoma de pulmón. En estos casos, los grupos que indicaban peores resultados generalmente mostraban estadios de cáncer más avanzados, tamaños de tumores más grandes o una diseminación más avanzada.

Luego, los investigadores utilizaron niveles de expresión genética del factor epigenético para entrenar un modelo de IA, con el objetivo de predecir los resultados de los pacientes específicamente en los cinco tipos de cáncer donde las diferencias de supervivencia eran más significativas. El modelo pudo segregar con precisión a los pacientes en dos grupos: aquellos que probablemente tendrían mejores resultados y aquellos que enfrentaron peores resultados. En particular, los genes más críticos para las predicciones del modelo de IA se superpusieron significativamente con los genes característicos que definen el grupo.

"Nuestra investigación ayuda a proporcionar una hoja de ruta para modelos de IA similares que pueden generarse a través de listas de factores epigenéticos de pronóstico disponibles públicamente", dijo el primer autor del estudio, Michael Cheng, estudiante de posgrado en el Programa Interdepartamental de Bioinformática de UCLA. "La hoja de ruta demuestra cómo identificar ciertos factores influyentes en diferentes tipos de cáncer y contiene un potencial interesante para predecir objetivos específicos para el tratamiento del cáncer".

Enlaces relacionados:
UCLA Health  


Miembro Oro
Quality Control Material
iPLEX Pro Exome QC Panel
Collection and Transport System
PurSafe Plus®
New
ESR Analyzer
TEST1 2.0
New
Automatic Chemiluminescence Immunoassay Analyzer
Shine i2000
Lea el artículo completo al registrarse hoy mismo, es GRATIS! ¡Es GRATUITO!
Regístrese GRATIS a LabMedica.es y acceda a las noticias y eventos que afectan al mundo del Laboratorio.
  • Edición gratuita de la versión digital de Lab Medica en Español enviado regularmente por email
  • Revista impresa gratuita de la revista Lab Medica en Español (disponible únicamente fuera de EUA y Canadá).
  • Acceso gratuito e ilimitado a ediciones anteriores de Lab Medica en Español digital
  • Boletín de Lab Medica en Español gratuito cada dos semanas con las últimas noticias
  • Noticias de último momento enviadas por email
  • Acceso gratuito al calendario de eventos
  • Acceso gratuito a los servicios de nuevos productos de LinkXpress
  • Registrarse es sencillo y GRATUITO!
Haga clic aquí para registrarse








Canales

Diagnóstico Molecular

ver canal
Imagen: a la izquierda está la imagen de la célula original y a la derecha la misma imagen celular con zoom y renderizada en el software de imagen especial (foto cortesía de FIU)

Biomarcador de inflamación cerebral detecta Alzheimer años antes de los síntomas

La enfermedad de Alzheimer afecta a millones de personas en todo el mundo, pero a menudo se diagnostica a los pacientes solo tras la aparición de pérdida de memoria y otros síntomas,... Más

Tecnología

ver canal
Imagen: diseño conceptual de la cápsula CORAL para el muestreo microbiano en el intestino delgado (H. Mohammed et al., Devuce (2025). DOI: 10.1016/j.device.2025.100904)

Muestras de cápsulas inspiradas en corales ocultan bacterias intestinales

El microbioma intestinal se ha vinculado a afecciones que van desde trastornos inmunitarios hasta problemas de salud mental. Sin embargo, las pruebas de heces convencionales a menudo no logran detectar... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.