Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Please note that the LabMedica website is also available in a complete English version
Presenta Sitios para socios Información LinkXpress
Ingresar
Publique su anuncio con nosotros
BIO-RAD LABORATORIES

Deascargar La Aplicación Móvil




Modelo de IA predice resultados de pacientes en múltiples tipos de cáncer

Por el equipo editorial de LabMedica en español
Actualizado el 21 Dec 2023
Print article
Imagen: La progresión de un tumor también puede reflejar los factores epigenéticos que determinan la conformación estructural del ADN (Fotografía cortesía de 123RF)
Imagen: La progresión de un tumor también puede reflejar los factores epigenéticos que determinan la conformación estructural del ADN (Fotografía cortesía de 123RF)

En investigaciones anteriores, los científicos han examinado el impacto de las mutaciones en los genes que codifican factores epigenéticos (elementos que influyen en la activación o desactivación de genes) sobre la susceptibilidad al cáncer. Sin embargo, la comprensión de la influencia de los niveles de estos factores en la progresión del cáncer ha permanecido en gran medida inexplorada. Para abordar esta brecha, los investigadores han desarrollado un innovador modelo de inteligencia artificial (IA) basado en factores epigenéticos que pronostica con éxito los resultados de los pacientes en varios tipos de cáncer. Lo hace analizando los patrones de expresión genética de factores epigenéticos dentro de los tumores y categorizándolos en distintos grupos. Se ha demostrado que este método predice los resultados de los pacientes de manera más efectiva que las métricas convencionales como el grado y el estadio del cáncer. Además, estos conocimientos proporcionan una base para futuras terapias dirigidas a factores epigenéticos en el tratamiento del cáncer, como las histonas acetiltransferasas y los remodeladores de cromatina SWI/SNF.

Investigadores de UCLA Health (Los Ángeles, CA, EUA) examinaron los patrones de expresión de 720 factores epigenéticos en tumores de 24 tipos de cáncer diferentes. Clasificaron estos tumores en grupos únicos según estos patrones. Su estudio reveló que en 10 de estos tipos de cáncer, los grupos se correlacionaban con diferencias significativas en los resultados de los pacientes, incluida la supervivencia libre de progresión, la supervivencia específica de la enfermedad y la supervivencia general. Esta correlación fue particularmente notable en el carcinoma adrenocortical, el carcinoma de células claras renales, el glioma cerebral de grado inferior, el carcinoma hepatocelular de hígado y el adenocarcinoma de pulmón. En estos casos, los grupos que indicaban peores resultados generalmente mostraban estadios de cáncer más avanzados, tamaños de tumores más grandes o una diseminación más avanzada.

Luego, los investigadores utilizaron niveles de expresión genética del factor epigenético para entrenar un modelo de IA, con el objetivo de predecir los resultados de los pacientes específicamente en los cinco tipos de cáncer donde las diferencias de supervivencia eran más significativas. El modelo pudo segregar con precisión a los pacientes en dos grupos: aquellos que probablemente tendrían mejores resultados y aquellos que enfrentaron peores resultados. En particular, los genes más críticos para las predicciones del modelo de IA se superpusieron significativamente con los genes característicos que definen el grupo.

"Nuestra investigación ayuda a proporcionar una hoja de ruta para modelos de IA similares que pueden generarse a través de listas de factores epigenéticos de pronóstico disponibles públicamente", dijo el primer autor del estudio, Michael Cheng, estudiante de posgrado en el Programa Interdepartamental de Bioinformática de UCLA. "La hoja de ruta demuestra cómo identificar ciertos factores influyentes en diferentes tipos de cáncer y contiene un potencial interesante para predecir objetivos específicos para el tratamiento del cáncer".

Enlaces relacionados:
UCLA Health  

Miembro Platino
PRUEBA RÁPIDA COVID-19
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Miembro Oro
Prueba de actividad proteasa ADAMTS-13
ATS-13 Activity Assay

Print article

Canales

Química Clínica

ver canal
Imagen: Alcanzando velocidades de hasta 6.000 rpm, esta centrífuga forma la base de un nuevo tipo de prueba biomédica POC económica (Fotografía cortesía de la Universidad de Duke)

Prueba biomédica POC hace girar una gota de agua utilizando ondas sonoras para detección del cáncer

Los exosomas, pequeñas biopartículas celulares que transportan un conjunto específico de proteínas, lípidos y materiales genéticos, desempeñan un papel... Más

Hematología

ver canal
Imagen: El dispositivo portátil de bajo costo identifica rápidamente a los pacientes de quimioterapia en riesgo de sepsis (Fotografía cortesía de 52North Health)

Prueba de sangre POC por punción digital determina riesgo de sepsis neutropénica en pacientes sometidos a quimioterapia

La neutropenia, una disminución de los neutrófilos (un tipo de glóbulo blanco crucial para combatir las infecciones), es un efecto secundario frecuente de ciertos tratamientos contra... Más

Inmunología

ver canal
Imagen: El método de prueba podría ayudar a algunos pacientes con cáncer a un tratamiento más efectivo (Fotografía cortesía de 123RF)

Método de prueba podría ayudar a más pacientes recibir tratamiento adecuado contra el cáncer

El tratamiento del cáncer no siempre es una solución única, pero el campo de la investigación del cáncer está dando grandes pasos para encontrar a los pacientes los tratamientos más eficaces para sus afecciones... Más

Microbiología

ver canal
Imagen: El análisis de sangre podría identificar a millones de personas que propagaron la TB sin saberlo (Fotografía cortesía de la Universidad de Southampton)

Análisis de sangre para tuberculosis podría detectar millones de propagadores silenciosos

La tuberculosis (TB) es la enfermedad infecciosa más mortal del mundo y se cobra más de un millón de vidas al año, según informa la Organización Mundial de la Salud.... Más

Tecnología

ver canal
Imagen: El sensor electroquímico detecta HPV-16 y HPV-18 con alta especificidad (Fotografía cortesía de 123RF)

Biosensor de ADN permite diagnóstico temprano del cáncer de cuello uterino

El disulfuro de molibdeno (MoS2), reconocido por su potencial para formar nanoláminas bidimensionales como el grafeno, es un material que llama cada vez más la atención de la comunidad... Más
Copyright © 2000-2024 Globetech Media. All rights reserved.