Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Please note that the LabMedica website is also available in a complete English version
Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
LGC Clinical Diagnostics

Deascargar La Aplicación Móvil




Modelo de IA para clasificación de tumores cerebrales avanza en neuropatología

Por el equipo editorial de LabMedica en español
Actualizado el 11 Jan 2024
Print article
Imagen: Diez ejemplos de resultados de clasificación en los conjuntos de pruebas externas (Fotografía cortesía de Nature Communications, 2023)
Imagen: Diez ejemplos de resultados de clasificación en los conjuntos de pruebas externas (Fotografía cortesía de Nature Communications, 2023)

Los gliomas difusos, que comprenden una gran parte de los tumores cerebrales malignos en adultos, incluyen varios tipos, como astrocitoma, oligodendroglioma y glioblastoma. El diagnóstico de este tipo de gliomas tradicionalmente se basa en un análisis que integra características histológicas con detalles moleculares, un método que presenta complejidades significativas cuando se intenta desarrollar un modelo de diagnóstico integral a partir de imágenes de portaobjetos completos (WSI). La inmensa resolución de gigapíxeles de los WSI hace que el uso de redes neuronales convolucionales estándar para el análisis sea poco práctico. Para abordar este desafío, los investigadores han introducido un novedoso modelo de diagnóstico integrado que puede clasificar automáticamente los gliomas difusos de tipo adulto directamente a partir de imágenes patológicas estándar sin anotar de diapositivas completas, eliminando la necesidad de pruebas moleculares adicionales.

Investigadores de la Academia China de Ciencias (CAS, Beijing, China) han ideado este modelo de aprendizaje profundo capaz de analizar WSI y categorizar gliomas sin necesidad de anotaciones manuales detalladas. Este modelo cumple con las estrictas pautas de clasificación descritas en la quinta edición de 2021 de la Clasificación de tumores del sistema nervioso central de la Organización Mundial de la Salud. El modelo se sometió a entrenamiento y validación en un conjunto de datos diverso que comprende 2.624 casos de pacientes recopilados en tres hospitales diferentes.

La eficacia del modelo se evaluó con base a su precisión de clasificación, sensibilidad a diversos tipos y grados de glioma y su capacidad para diferenciar entre genotipos que exhiben características histológicas similares. Los resultados de los experimentos indican que el modelo demuestra un desempeño sólido, con todas las áreas bajo la curva del operador receptor superando 0,90. Este desempeño se destacó en su capacidad para clasificar los principales tipos de tumores, identificar los grados de los tumores dentro de cada tipo y, en particular, distinguir entre genotipos de tumores que comparten las mismas características histológicas.

"Nuestro modelo de diagnóstico integrado tiene el potencial de usarse en escenarios clínicos para la clasificación automatizada e imparcial de gliomas difusos de tipo adulto", afirmó el profesor Li Zhicheng de CAS, quien dirigió el equipo de investigación. "La investigación futura se centrará en mejorar este modelo para tener conjuntos de datos multicéntricos y multirraciales".

Enlaces relacionados:
Academia China de Ciencias

Miembro Oro
Pharmacogenetics Panel
VeriDose Core Panel v2.0
New
Miembro Oro
Strep Pneumoniae Rapid Test
Strep Pneumoniae (6503 – 6573)
New
Human Chorionic Gonadotropin Test
Humasis hCG Combo
New
Strongyloides Stercoralis Test
Strongyloides IgG ELISA

Print article

Canales

Inmunología

ver canal
Imagen: tratamiento personalizado contra el cáncer utilizando tecnología de bioimpresión 3D (foto cortesía de POSTECH)

Modelo de cáncer gástrico bioimpreso en 3D utiliza tejido del paciente para predecir respuesta a fármacos

La heterogeneidad tumoral representa un obstáculo importante en el desarrollo y tratamiento de terapias contra el cáncer, ya que las respuestas de los pacientes a un mismo fármaco pueden diferir y el momento... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.