Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
INTEGRA BIOSCIENCES AG

Deascargar La Aplicación Móvil




Herramienta inmunooncológica de IA predice resultados del tratamiento del cáncer de pulmón

Por el equipo editorial de LabMedica en español
Actualizado el 03 Dec 2024
Imagen: HistoTME lee imágenes de histopatología teñidas de forma rutinaria de muestras de tumores (Foto cortesía de Adobe Stock)
Imagen: HistoTME lee imágenes de histopatología teñidas de forma rutinaria de muestras de tumores (Foto cortesía de Adobe Stock)

Los inhibidores de los puntos de control inmunitario (ICI) se utilizan para tratar el cáncer de pulmón de células no pequeñas (CPCNP) al mejorar la capacidad del sistema inmunitario para combatir el cáncer. Sin embargo, identificar qué pacientes se beneficiarán más con este tratamiento sigue siendo un desafío. Ahora, los avances en inteligencia artificial (IA) y herramientas de diagnóstico ofrecen el potencial de mejorar los resultados del tratamiento y las tasas de supervivencia para los pacientes con CPCNP al ayudar a los médicos a predecir con mayor precisión su respuesta a la terapia con ICI.

Los investigadores de la SUNY Upstate Medical University (Syracuse, NY, EUA) han desarrollado HistoTME, una herramienta de inteligencia artificial asequible y fácil de implementar. Este algoritmo avanzado de aprendizaje profundo analiza imágenes histopatológicas teñidas de forma rutinaria de muestras tumorales para predecir subtipos moleculares (basándose en la secuenciación masiva de ARN), lo que proporciona información sobre el microambiente tumoral (TME). Al examinar estas imágenes patológicas, HistoTME identifica tipos de células específicos en el tejido tumoral circundante, lo que ofrece información valiosa sobre la composición única del TME del paciente. Esto es crucial para predecir las respuestas personalizadas al tratamiento ICI, especialmente en pacientes con baja expresión de PD-L1, un marcador clave que se usa comúnmente en diagnósticos complementarios. El algoritmo se validó en un conjunto de datos multimodal que comprende más de 650 pacientes con cáncer de pulmón y más de 1.500 imágenes.

Los investigadores esperan que este método ayude a los médicos a seleccionar planes de tratamiento personalizados con mayor precisión y rentabilidad, especialmente para pacientes que no tienen acceso a pruebas moleculares costosas. Además, esta prueba podría complementar los diagnósticos adicionales existentes, que a menudo tienen dificultades para identificar a los pacientes adecuados para los tratamientos correctos. La siguiente fase del estudio implicará la validación clínica de HistoTME, que evaluará aún más su eficacia en entornos clínicos del mundo real y puede conducir a su integración en la atención oncológica de rutina.

"Los diagnósticos y pronósticos impulsados por IA tienen el potencial de transformar el futuro de las prácticas de atención médica y la oncología de precisión", dijo la investigadora de Upstate Tamara Jamaspishvili, MD/PhD, quien ganó el premio al "Mejor póster de investigación" para la facultad en la conferencia nacional de la Asociación de Patología Digital, PathVisions 2024 por su trabajo utilizando IA y patología computacional para mejorar el diagnóstico y el tratamiento del cáncer.

Miembro Oro
PIPETA HÍBRIDA
SWITCH
KIT DE PRUEBA POC PARA H.PYLORI
Hepy Urease Test
CBM Analyzer
Complete Blood Morphology (CBM) Analyzer
Sample Transportation System
Tempus1800 Necto

Canales

Diagnóstico Molecular

ver canal
Imagen: el nuevo análisis de muestras de sangre vincula patrones de proteínas específicos con el riesgo de mortalidad a cinco y diez años (fotografía cortesía de Adobe Stock)

Perfiles de proteínas sanguíneas predicen riesgo de mortalidad por intervención médica temprana

Los niveles elevados de proteínas específicas en la sangre pueden indicar un mayor riesgo de mortalidad, según nueva evidencia que muestra que cinco proteínas implicadas en el cáncer, la inflamación y... Más

Hematología

ver canal
Imagen: una investigación ha relacionado la agregación plaquetaria en muestras de sangre de la mediana edad con los marcadores cerebrales tempranos de la enfermedad de Alzheimer (fotografía cortesía de Shutterstock)

Análisis sanguíneo de actividad plaquetaria en mediana edad podría identificar riesgo temprano de Alzheimer

La detección temprana de la enfermedad de Alzheimer sigue siendo una de las mayores necesidades insatisfechas en neurología, sobre todo porque los cambios biológicos que subyacen al... Más

Microbiología

ver canal
Imagen: el ensayo SMART-ID ofrece una amplia detección de patógenos sin necesidad de cultivo (fotografía cortesía de Scanogen)

Ensayo rápido identifica patógenos de infecciones sanguíneas directamente en muestras de pacientes

Las infecciones del torrente sanguíneo en la sepsis progresan rápidamente y requieren un diagnóstico rápido y preciso. Los métodos actuales de hemocultivo suelen tardar... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.