Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
Werfen

Deascargar La Aplicación Móvil





Inteligencia artificial permite el análisis rápido de las imágenes de los pulmones en los pacientes con COVID-19

Por el equipo editorial de LabMedica en español
Actualizado el 27 Apr 2020
Imagen: Radiografía de tórax de un paciente con neumonía por COVID-19, radiografía original (izquierda) y resultado con IA para neumonía (derecha) (Fotografía cortesía de UC San Diego Health)
Imagen: Radiografía de tórax de un paciente con neumonía por COVID-19, radiografía original (izquierda) y resultado con IA para neumonía (derecha) (Fotografía cortesía de UC San Diego Health)
Los radiólogos y los médicos de UC San Diego Health (San Diego, CA, EUA) utilizan inteligencia artificial (IA) para aumentar el análisis de imágenes de pulmón en un estudio de investigación clínica habilitado por Amazon Web Services (AWS). El objetivo es detectar rápidamente la neumonía y, por lo tanto, poder diferenciar mejor entre los pacientes con COVID-19 que probablemente necesiten más atención de apoyo en el hospital y aquellos que podrían ser seguidos de cerca en el hogar

Hasta ahora, la nueva capacidad de IA ha proporcionado a los médicos de UC San Diego Health una visión única de más de 2.000 imágenes. En un caso, a un paciente en el Departamento de Urgencias que no tenía ningún síntoma de COVID-19 le practicaron una radiografía de tórax por otras razones. Sin embargo, la lectura de IA de la radiografía indicó signos de neumonía temprana, que luego fue confirmada por un radiólogo. Como resultado, el paciente fue examinado para detectar la COVID-19 y se encontró que era positivo para la enfermedad.

Los investigadores de UC San Diego habían desarrollado inicialmente un algoritmo de aprendizaje automático que permite a los radiólogos usar IA para mejorar sus propias habilidades para detectar neumonía en las radiografías de tórax. Entrenado con 22.000 anotaciones por radiólogos humanos, el algoritmo superpone las radiografías con mapas codificados por colores que indican la probabilidad de neumonía. Más recientemente, los investigadores aplicaron este enfoque de IA a 10 radiografías de tórax, publicadas en revistas médicas, de cinco pacientes tratados en China y EUA para COVID-19. El algoritmo localizó consistentemente áreas de neumonía, a pesar del hecho de que las imágenes fueron tomadas en varios hospitales diferentes y variaron considerablemente en técnica, contraste y resolución. A continuación, el método de IA se implementó en UC San Diego Health en un estudio de investigación clínica que permite a cualquier médico o radiólogo obtener una estimación inicial sobre la probabilidad de que un paciente tenga neumonía en cuestión de minutos, en el punto de atención. Los investigadores creen que las radiografías de tórax son más baratas, el equipo es más portátil y más fácil de limpiar, y los resultados se obtienen más rápidamente que con muchos otros diagnósticos.

“Ahí es donde las imágenes pueden jugar un papel importante. Podemos clasificar rápidamente a los pacientes al nivel adecuado de atención, incluso antes de que se confirme oficialmente un diagnóstico de COVID-19”, dijo Albert Hsiao, MD, PhD, profesor asociado de radiología en la Facultad de Medicina de la Universidad de California en San Diego y radiólogo en UC San Diego Health.

“A medida que nos preparamos para un aumento potencial de los pacientes con COVID-19, no solo las habitaciones de los pacientes y los suministros pueden ser limitados, sino también la capacidad del médico y del personal”, dijo Christopher Longhurst, MD, director de información y director médico asociado de UC San Diego Health. “Por lo tanto, es tremendamente útil contar con herramientas que permitan a los médicos que no tienen tanta experiencia como los radiólogos en la lectura de rayos X, tener una idea rápida de lo que ven, especialmente los médicos de urgencias y de los hospitales de primera línea”.

Enlace relacionado:
UC San Diego Health

Miembro Oro
Automated MALDI-TOF MS System
EXS 3000
Miembro Oro
Fibrinolysis Assay
HemosIL Fibrinolysis Assay Panel
Miembro Plata
PLACAS PARA PCR
Diamond Shell PCR Plates
Hemodynamic System Monitor
OptoMonitor

Canales

Diagnóstico Molecular

ver canal
Imagen: los investigadores utilizaron la metabolómica aplicada de Clarity Bio Systems para examinar los cambios en las vías metabólicas asociadas con la lesión renal temprana (fotografía cortesía de Clarity Bio Systems)

Biomarcadores sanguíneos ocultos revolucionan el diagnóstico de nefropatía diabética

La nefropatía diabética suele desarrollarse de forma asintomática, y muchos pacientes reciben el diagnóstico solo después de que se haya producido un daño irreversible.... Más

Hematología

ver canal
Imagen: se descubrió que los pacientes con anemia falciforme con niveles más altos de RMV, AMV y EMV tenían una enfermedad más grave (fotografía cortesía de Adobe Stock)

Medición de microvesículas podría detectar lesiones vasculares en pacientes con anemia falciforme

Evaluar la gravedad de la enfermedad de células falciformes (ECF) sigue siendo un reto, sobre todo al intentar predecir la hemólisis, el daño vascular y el riesgo de complicaciones... Más

Microbiología

ver canal
Imagen: la prueba de diagnóstico rápido está en fase piloto en tres hospitales del Reino Unido (fotografía cortesía de Imperial College Healthcare)

Análisis sanguíneo rápido diagnostica infecciones infantiles potencialmente mortales

Distinguir entre enfermedades infantiles leves e infecciones potencialmente mortales como la sepsis o la meningitis sigue siendo un gran desafío en la atención de urgencias.... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.